
- •1. Этапы подготовки и решения задач на эвм. Понятие алгоритма.
- •2. Элементарные базовые управляющие структуры
- •3. Состав и работа системы программирования Турбо Паскаль
- •4. Алфавит языка
- •5. Простейшие конструкции и типы данных
- •6. Структура программ на Паскале
- •7. Ввод и вывод данных
- •8. Программирование линейных структур в Паскале
- •Var b,y,z: real;
- •Var day: integer;
- •Var X,y: real; к: integer;
- •11. Программирование циклов с неизвестным числом повторений
- •Var X: integer;
- •Var X,a,p: real; k:integer;
- •12. Программирование вложенных циклов. Массивы.
- •Var amin:real; I, j : integer; a:array[1..100] of real;
- •13. Процедуры и функции в Паскале
- •Var a,b,c,s1,s2,s3,k,r,z:real;
- •Var c,n,m,l: integer;
- •Var p,I: integer;
- •14. Записи в Паскале.
- •15. Работа с файлами в Паскале
- •I:byte;
- •16. Программирование в графическом режиме
- •17. Анимация изображений в Паскале
- •X,y,dy,dx,time,delta,radius,Gd,Gm: integer;
- •18. Построение графика аналитически заданной функции
- •Xn, xk, X, y, Ymin, Ymax, dx:real;
- •19. Численные методы вычисления определённого интеграла
- •I, n: integer;
- •20. Численные методы решения нелинейных уравнений. Общие принципы.
- •22. Численные методы решения нелинейных уравнений. Метод Ньютона (метод касательных).
- •23. Численные методы решения нелинейных уравнений. Метод хорд (метод ложного положения).
- •24. Численные методы решения обыкновенных дифференциальных уравнений. Общие принципы.
- •25. Численные методы решения обыкновенных дифференциальных уравнений. Метод Эйлера.
- •Xn,xk,yn,h,X,y:real;
- •I:integer;
- •26. Численные методы решения обыкновенных дифференциальных уравнений. Модифицированный метод Эйлера.
- •Xn,xk,yn,yw,h:real;
- •I,n:integer;
- •X,y:array [1..20] of real;
- •27. Численные методы решения обыкновенных дифференциальных уравнений. Метод Рунге-Кутта.
- •Xn,xk,yn,h,k0,k1,k2,k3:real;
- •I,n:integer;
- •X,y:array [1..20] of real;
24. Численные методы решения обыкновенных дифференциальных уравнений. Общие принципы.
Дифференциальными называются уравнения, содержащие одну или несколько производных. Поскольку большая часть законов физики формулируется именно в виде дифференциальных уравнений, то инженеру приходится сталкиваться с ними. Лишь немногие из них удаётся решить без помощи компьютера. Поскольку большая часть законов физики формулируется именно в виде дифференциальных уравнений, то инженеру приходится сталкиваться с ними. Поэтому численные методы решения дифференциальных уравнений играют важную роль в практике инженерных расчётов.
Чтобы решить обыкновенное дифференциальное уравнение, необходимо знать значения зависимой переменной и (или) её производных при некоторых значениях независимой переменной. Если дополнительные условия задаются при одном значении независимой переменной, то такая задача называется задачей с начальными условиями, или задачей Коши. Если же условия задаются при двух или более значениях независимой переменной, то такая задача называется краевой. В задаче Коши дополнительные условия называются начальными, а в краевой задача – граничными.
Рассмотрим способы решения задачи Коши, которая формулируется следующим образом. Пусть дано дифференциальное уравнение и начальное условие y(x0)=y0. Требуется найти функцию y(x), удовлетворяющую как указанному уравнению, так и начальному условию. Искомая функция выражается в табличном виде
x0 |
x1 |
x2 |
x3 |
... |
xn |
y0 |
y1 |
y2 |
y3 |
... |
yn |
Значения x вычисляются, через малое приращение h, h=x0-x1=x2-x1. Обычно численное решение этой задачи получают, вычисляя сначала значение производной, а затем, задавая малое приращение для x, переходят к новой точке x1=x0+h. Положение новой точки определяется по наклону кривой, вычисленному с помощью дифференциального уравнения. Таким образом, график численного решения представляет собой последовательность коротких прямолинейных отрезков, которыми аппроксимируется истинная кривая y=f(x). Сам численный метод определяет порядок действий при переходе от данной точки кривой к следующей. На рисунке показано графическое представление численного решения задачи Коши. Здесь 1 – точное решение; 2 – решение, полученное численным методом.
Наиболее простыми из методов решения задачи Коши являются методы Эйлера и Рунге-Кутта. Они используются для решения дифференциальных уравнений первого порядка вида y`=f(x,y), где y`=dy/dx, при начальном условии y(x0)=y0.
25. Численные методы решения обыкновенных дифференциальных уравнений. Метод Эйлера.
Это простейший метод решения задачи Коши, позволяющий решить дифференциальное уравнение первого порядка. Его точность невелика, поэтому на практике им пользуются редко. Однако, на основе этого метода легче понять алгоритм других, более эффективных методов. Метод Эйлера основан на разложении функции y в ряд Тейлора в окрестности x0:
Если h мало, то члены, содержащие производные второго и более высоких порядков, можно отбросить. Тогда
y(x0+h)=y(x0)+h*y`(x0)
y’(x0) находим из дифференциального уравнения, подставив в него начальное условие. Таким образом, можно получить приближённое значение y при малом смещении h от начальной точки x(x0). Этот процесс можно продолжить, используя следующую рекуррентную формулу
yi+1=yi + h*f(xi,yi), i=1,2,…
Графически метод Эйлера показан на рисунке. Ошибка метода имеет порядок h2.
Пример: Составим программу для решения дифференциального уравнения y'=2x2+2y при начальном условии y(0)=1; 0 =< x =< 1 и h=0,1.
Program Euler;
Uses Crt;
Var