
- •А.Е. Бурученко
- •Часть 1
- •Введение
- •I. Физические основы механики
- •Кинематика
- •1.1. Модели в механике. Система отсчета. Траектория, длина пути, вектор перемещения
- •1.2. Скорость
- •1.3. Ускорение и его составляющие
- •1.4 Угловая скорость и угловое ускорение
- •2. Динамика материальной точки и поступательного движения твердого тела
- •2.1. Первый закон Ньютона. Масса. Сила
- •2.2. Второй закон Ньютона
- •2.3. Третий закон Ньютона
- •2.4. Силы трения
- •2.5. Закон сохранения импульса. Центр масс
- •3. Работа и энергия
- •3.1. Энергия, работа, мощность
- •3.2. Кинетическая и потенциальная энергии
- •3.3. Закон сохранения энергии
- •3.4. Графическое представление энергии
- •3.5. Удар абсолютно упругих и неупругих тел
- •Механика твердого тела
- •4.1. Момент инерции
- •4.2. Кинетическая энергия вращения
- •4.3. Момент силы. Уравнение динамики вращательного движения твердого тела
- •4.4. Момент импульса и закон его сохранения
- •4.5. Сила тяжести и вес. Невесомость
- •Механические колебания
- •5.1. Гармонические колебания и их характеристики
- •5.2. Механические гармонические колебания
- •5.3. Гармонический осциллятор. Пружинный, физический и математический маятники
- •5.4. Сложение гармонических колебаний одного направления и одинаковой частоты. Биения
- •5.5. Сложение взаимно перпендикулярных колебаний
- •5.6. Свободные затухающие колебания. Дифференциальное уравнение свободных затухающих колебаний. Автоколебания.
- •5.7. Вынужденне колебания. Дифференциальное уравнение вынужденных колебаний и его решение.
- •5.8. Амплитуда и фаза вынужденных колебаний. Резонанс
- •6. Элементы механики жидкостей
- •6.1. Давление в жидкости и газе
- •6.2. Уравнение неразрывности
- •6.3. Уравнение Бернулли и следствия из него
- •6.4. Вязкость (внутреннее трение). Ламинарный и турбулентный режимы течения жидкостей
- •Таким образом, модуль силы внутреннего трения
- •7. Элементы специальной теории относительности
- •7.1. Преобразования Галилея. Механический принцип относительности
- •Ускорение в системе отсчета к
- •7.2. Постулаты специальной теории относительности
- •7.3. Преобразования Лоренца
- •7.4. Следствия из преобразований Лоренца
- •Подставляя (7.10) в (7.9), получим
- •7.5. Интервал между событиями
- •7.6. Основной закон релятивистской динамики материальной точки
- •7.7. Законы взаимосвязи массы и энергии
- •Закон (7.26) можно, учитывая выражение (7.23), записать в виде
- •Энергия связи системы
- •II. Основы молекулярной физики и термодинамики
- •1. Молекулярно-кинетическая теория идеального газа
- •1.1. Опытные законы идеального газа
- •1.2. Уравнение Клапейрона-Менделеева
- •1.3. Основное уравнение молекулярно-кинетической теории идеальных газов
- •Тогда давление газа, оказываемое им на стенку сосуда
- •Уравнение (1.11) с учетом (1.12) примет
- •1.4. Закон Максвелла для распределения молекул идеального газа по скоростям
- •1.5. Среднее число столкновений и средняя длина свободного пробега молекул
- •Расчеты показывают, что при учете движения других молекул
- •Тогда средняя длина свободного пробега
- •1.6. Явления переноса в термодинамически неравновесных системах
- •Можно показать, что
- •2. Основы термодинамики
- •2.1. Число степеней свободы молекулы. Закон равномерного распределения энергии по степеням свободы молекул
- •2.2. Первое начало термодинамики
- •2.3. Работа газа при изменении его объема
- •2.4. Теплоемкость
- •2.5. Применение первого начала термодинамики к изопроцессам
- •Тогда для произвольной массы газа получим
- •2.6. Адиабатический процесс. Политропный процесс
- •2.7. Круговой процесс (цикл). Обратимые и необратимые процессы
- •2.8. Энтропия. Ее статистическое толкование и связь с термодинамической вероятностью
- •2.9. Второе начало термодинамики
- •2.10 Тепловые двигатели и холодильные машины. Цикл Карно и его коэффициент полезного действия для идеального газа
- •Оглавление
- •Часть 1
1.2. Уравнение Клапейрона-Менделеева
Как уже указывалось, состояние некоторой массы определяется тремя термодинамическими параметрами: давлением р , объемом V и температурой Т. Между этими параметрами существует определенная связь, называемая уравнением состояния.
Французский физик Б.Клапейрон вывел уравнение состояния идеального газа, объединив законы Бойля-Мариотта и Гей-Люссака.
Рис. 49 |
Пусть некоторая масса газа занимает объем V1, имеет давление p1 и находится при температуре T1. Эта же масса газа в другом произвольном состоянии характеризуется параметрами р2, V2, T2 (рис. 49). Переход из состояния 1 в состояние 2 осуществляется в виде двух процессов: |
1) изотермического (изотерма 1-1),
2) изохорного (изохора 1-2).
В соответствии с законами Бойля-Мариотта (1.1) и Гей-Люссака (1.4) запишем:
(1.5)
.
(1.6)
Исключив из уравнений (1.5) и (1.6) p1' , получим
Так
как состояния 1 и 2 были выбраны произвольно,
то для данной массы газа величина
остается постоянной, т.е.
.
(1.7)
Выражение (1.7) является уравнением
Клапейрона, в котором В - газовая
постоянная, различная для разных газов.
Русский ученый Д.И.Менделеев объединил уравнение Клапейрона с законом Авогадро, отнеся уравнение (1.7) к одному молю, использовав молярный объем Vm. Согласно закону Авогадро, при одинаковых р и Т моли всех газов занимают одинаковый молярный объем Vm, поэтому постоянная В будет одинакова для всех газов. Эта общая для всех газов постоянная обозначается R и называется молярной газовой постоянной. Уравнению
PVm=RT (1.8)
удовлетворяет лишь идеальный газ, и оно является уравнением состояния идеального газа, называемым также уравнением Менделеева-Клапейрона.
Числовое значение молярной газовой постоянной определим из формулы (1.8), полагая, что моль газа находится при нормальных условиях (р0=1,013105 Па, Т0=273,15 К, Vm=22,4110-3 м3 /моль): R=8,31 Дж/(моль К).
От
уравнения (1.8) для моля газа можно перейти
к уравнению Клапейрона-Менделеева для
произвольной массы газа. Если при
некотором заданном давлении и температуре
один моль газа занимает объем Vm,
то при тех же условиях масса m
газа займет объем
,
где М - молярная
масса (масса
одного моля вещества). Единица молярной
массы - килограмм на моль (кг/моль).
Уравнение Клапейрона-Менделеева для
массы m газа
,
(1.9)
где
- количество вещества.
Часто пользуются несколько иной формой уравнения состояния идеального газа, вводя постоянную Больцмана:
.
Исходя из этого, уравнение состояния (1.8) запишем в виде
,
где
-
концентрация молекул (число молекул в
единице объема). Таким образом, из
уравнения
р=nkT (1.10) следует, что давление идеального газа при данной температуре прямо пропор-ционально концентрации его молекул (или плотности газа). При одинаковых температуре и давлении все газы содержат в единице объема одинаковое число молекул. Число молекул, содержащихся в 1 м3 газа при нормальных условиях, называется числом Лошмидта:
.