
- •А.Е. Бурученко
- •Часть 1
- •Введение
- •I. Физические основы механики
- •Кинематика
- •1.1. Модели в механике. Система отсчета. Траектория, длина пути, вектор перемещения
- •1.2. Скорость
- •1.3. Ускорение и его составляющие
- •1.4 Угловая скорость и угловое ускорение
- •2. Динамика материальной точки и поступательного движения твердого тела
- •2.1. Первый закон Ньютона. Масса. Сила
- •2.2. Второй закон Ньютона
- •2.3. Третий закон Ньютона
- •2.4. Силы трения
- •2.5. Закон сохранения импульса. Центр масс
- •3. Работа и энергия
- •3.1. Энергия, работа, мощность
- •3.2. Кинетическая и потенциальная энергии
- •3.3. Закон сохранения энергии
- •3.4. Графическое представление энергии
- •3.5. Удар абсолютно упругих и неупругих тел
- •Механика твердого тела
- •4.1. Момент инерции
- •4.2. Кинетическая энергия вращения
- •4.3. Момент силы. Уравнение динамики вращательного движения твердого тела
- •4.4. Момент импульса и закон его сохранения
- •4.5. Сила тяжести и вес. Невесомость
- •Механические колебания
- •5.1. Гармонические колебания и их характеристики
- •5.2. Механические гармонические колебания
- •5.3. Гармонический осциллятор. Пружинный, физический и математический маятники
- •5.4. Сложение гармонических колебаний одного направления и одинаковой частоты. Биения
- •5.5. Сложение взаимно перпендикулярных колебаний
- •5.6. Свободные затухающие колебания. Дифференциальное уравнение свободных затухающих колебаний. Автоколебания.
- •5.7. Вынужденне колебания. Дифференциальное уравнение вынужденных колебаний и его решение.
- •5.8. Амплитуда и фаза вынужденных колебаний. Резонанс
- •6. Элементы механики жидкостей
- •6.1. Давление в жидкости и газе
- •6.2. Уравнение неразрывности
- •6.3. Уравнение Бернулли и следствия из него
- •6.4. Вязкость (внутреннее трение). Ламинарный и турбулентный режимы течения жидкостей
- •Таким образом, модуль силы внутреннего трения
- •7. Элементы специальной теории относительности
- •7.1. Преобразования Галилея. Механический принцип относительности
- •Ускорение в системе отсчета к
- •7.2. Постулаты специальной теории относительности
- •7.3. Преобразования Лоренца
- •7.4. Следствия из преобразований Лоренца
- •Подставляя (7.10) в (7.9), получим
- •7.5. Интервал между событиями
- •7.6. Основной закон релятивистской динамики материальной точки
- •7.7. Законы взаимосвязи массы и энергии
- •Закон (7.26) можно, учитывая выражение (7.23), записать в виде
- •Энергия связи системы
- •II. Основы молекулярной физики и термодинамики
- •1. Молекулярно-кинетическая теория идеального газа
- •1.1. Опытные законы идеального газа
- •1.2. Уравнение Клапейрона-Менделеева
- •1.3. Основное уравнение молекулярно-кинетической теории идеальных газов
- •Тогда давление газа, оказываемое им на стенку сосуда
- •Уравнение (1.11) с учетом (1.12) примет
- •1.4. Закон Максвелла для распределения молекул идеального газа по скоростям
- •1.5. Среднее число столкновений и средняя длина свободного пробега молекул
- •Расчеты показывают, что при учете движения других молекул
- •Тогда средняя длина свободного пробега
- •1.6. Явления переноса в термодинамически неравновесных системах
- •Можно показать, что
- •2. Основы термодинамики
- •2.1. Число степеней свободы молекулы. Закон равномерного распределения энергии по степеням свободы молекул
- •2.2. Первое начало термодинамики
- •2.3. Работа газа при изменении его объема
- •2.4. Теплоемкость
- •2.5. Применение первого начала термодинамики к изопроцессам
- •Тогда для произвольной массы газа получим
- •2.6. Адиабатический процесс. Политропный процесс
- •2.7. Круговой процесс (цикл). Обратимые и необратимые процессы
- •2.8. Энтропия. Ее статистическое толкование и связь с термодинамической вероятностью
- •2.9. Второе начало термодинамики
- •2.10 Тепловые двигатели и холодильные машины. Цикл Карно и его коэффициент полезного действия для идеального газа
- •Оглавление
- •Часть 1
5.4. Сложение гармонических колебаний одного направления и одинаковой частоты. Биения
Колеблющееся тело может участвовать в нескольких колебательных процессах, тогда необходимо найти результирующее колебание, иными словами, колебания необходимо сложить. Сложим гармонические колебания одного направления и одинаковой частоты
,
воспользовавшись методом вращающегося вектора амплитуды.
Построим векторные диаграммы этих колебаний (рис. 29). Так как векторы A1 и A2 вращаются с одинаковой угловой скоростью о, то разность фаз (2-1)
между ними остается постоянной. Очевидно, что уравнение результирующего колебания будет:
.
(5.21)
Рис. 29 |
В выражении (5.21 ) амплитуда А и начальная фаза соответственно задаются соотношениями
|
Таким
образом, тело, участвуя в двух гармонических
колебаниях одного направления и
одинаковой частоты, совершает также
гармонические колебания в том же
направлении и с той же частотой, что и
складываемые колебания. Амплитуда
результирующего колебания зависит от
разности фаз
складываемых колебаний.
Проанализируем
выражение (5.22) в зависимости от разности
фаз
:
1)
,
тогда А=А1+А2,
т.е. амплитуда результирующего колебания
А равна сумме амплитуд складываемых
колебаний;
2)
, тогда
,
т.е. амплитуда результирующего
колебания равна разности амплитуд
складываемых колебаний.
Для практики особый интерес представляет случай, когда два складываемых гармонических колебания одинакового направления мало отличаются по частоте. В результате сложения этих двух колебаний получаются колебания с периодически изменяющейся амплитудой. Периодические изменения амплитуды колебаний, возникающие при сложении двух гармонических колебаний с близкими частотами, называются биениями.
Пусть амплитуды складываемых колебаний равны А, а частоты равны и + причем . Начало отсчета выберем так, чтобы начальные фазы обоих колебаний были равны нулю:
Складывая
эти выражения и учитывая, что во втором
сомножителе
,
найдем
.
(5.23)
Получившееся
выражение есть произведение двух
колебаний. Так как
,
тo
сомножитель, стоящий в скобках, почти
не изменяется, когда сомножитель cost
совершит несколько полных колебаний.
Поэтому резуль-тирующее колебание х
можно рассматривать как гармоническое
с частотой ,
амплитуда
которого изменяется по следующему
периодическому закону:
.
(5.24)
Частота
изменения Аб
в два раза больше частоты изменения
косинуса
(так как берется по модулю),
т.е. частота биений равна разности
частот
складываемых колебаний: =.
Период биений
.
Характер зависимости (5.23) показан на
рис. 30, где сплошные жирные линии дают
график результирующего колебания
(5.23), а огибающие их - график медленно
меняющейся по уравнению (5.24 ) амплитуды.
Определение частоты тона биений между эталонным и измеряемым колебаниями - наиболее широко применяемый на практике метод сравнения измеряемой величины с эталонной. Метод биений используется для настройки музыкальных инструментов, анализа слуха и т. д.