
курсовой проект / СПЕЦИАЛЬНЫЕ ЭЛЕКТРОМАГНИТНЫЕ РЕЛЕ / 324-327
.DOC
Рис. 8.6. Система главных контактов контактора МК
венное время включения 0,08 и отключения 0,06с. Более подробные данные приведены в [9.5].
Для увеличения износо-стойкости и надежности контакторов серии МК используется полупроводниковая приставка [8.2], схема которой приведена на рис. 8.7. Главные контакты ГК шунтированы тиристорами VS1 и VS2, управление которыми осуществляется через разделительные диоды VD2 и VD3. Если в данный полупериод направление тока соответствует показанному на рис. 8.7, то напряжение, приложенное между мостиком главного контакта и верхним неподвижным главным контактом, через диод VD2 открывает тиристор VSI, по которому начинает проходить ток цепи. После прохождения тока через нуль тиристор закрывается и процесс отключения заканчивается. Если ток имеет обратную полярность, то работают диод VD3 и тиристор VS2. Для защиты управляющих переходов тиристоров от превышений напряжения служат диоды VD1 и VD4. Цепочка RC облегчает условия восстановления напряжения и снижает перенапряжения на тиристорах. Общий вид контактора серии МК с приставкой дан на рис. 8.8. Полупроводниковая приставка расположена в корпусе 4. Контакторы МК с приставкой предназначены для тяжелого режима работы ЛС-4 с частотой коммутации 1200 в час и более. Их коммутационная износостойкость составляет 5*106 циклов при токе Iном=63 Л и 3*106 циклов при токе Iном= =100 А. Номинальный рабочий ток, Iр,ном при этом берется равным 0,6 Iном.
г) Вакуумные контакторы. Вакуумные контакторы (рис. 8.9, а) имеют герметичное ДУ, с помощью которого отключение коммутируемой цепи происходит в вакуумной среде за один-два полупериода (§4.1). На такой основе созданы трехфазные вакуумные контакторы типов КТ12РЗЗ и КТ12Р37 с поминальными токами 160 А и 400 А и номинальными напряжениями 660 и 1140 В. Контакторы предназначенны для
Риc. 8.7. Схема полупроводниковой приставки к контактору МК
Рис. 8.8. Контактор типа МК на номинальный ток 63А с полупроводниковой приставкой работы в режимах ЛС-3 и ЛС-4 при числе циклов 600 н 1200 в час с высокой изпосостойкостью [8.3].
Общий вид трехфазного вакуумного контактора показан на рис. 8.9,а. Якорь и две катушки электромагнита постоянного тока видны на рисунке. Вспомогательные контакты 2 размещены слева и справа от электромагнита и за-
Рис. 8.9. Вакуумный контактор. Дугогасительное устройство.
чищены прозрачными пыленепроницаемыми крышками, что позволяет производить осмотр контактов без их разборки. В более совершенных конструкциях вспомогательные контакты выполняются па герконах (см. гл. 11). Зазор между главными контактами 1,2 мм и увеличивается в процессе работы до 2 мм. Возможна однократная регулировка зазора. Малый ход контактов обеспечивает малую вибрацию и износостойкость до 2-106 циклов при ПВ=40%, частоте включений 600 в час, режиме АС-3 и напряжении 1140 В. Ток среза контакторов не превышает 1,5 А, что обеспечивает их работу без перенапряжении в цепях с током 160— 400 Л. Дугогасительное устройство приведено на рис. 8.9, б. Подвижный контакт 1 связан с якорем электромагнита и отключающей пружиной. Неподвижный контакт 2 закреплен в корпусе 3. Поверхности контактировать! облицованы металлокерамическими пластинами 4 и 5. Подвижный контакт 1 соединен с нижней частью ДУ с помощью сильфона 6, представляющего собой металлическую гармошку, выполненную из нержавеющей стали. Сильфон дает возможность перемещения подвижному контакту. Подвижный и неподвижный контакты изолируются друг от друга стеклянным или керамическим цилиндром 7. Экраны 8 и 9 выравнивают электрическое поле между контактами и защищают цилиндр и сильфон от паров металлов, появляющихся при гашении.
8.4. МАГНИТНЫЕ ПУСКАТЕЛИ
а) Основные требования и условия работы. Магнитным пускателем называется электрический аппарат, предназначенный для пуска и отключения короткозамкнутых асинхронных двигателей. Как правило, в пускатель помимо контактора встроены тепловые реле для защиты двигателя от токовых перегрузок и «потери фазы». Работа асинхронных двигателей в значительной степени зависит от таких свойств пускателей, как износостойкость, коммутационная способность, надежность защиты двигателя от перегрузок. В процессе эксплуатации довольно часто обрывается одна из фаз трехфазного питающего напряжения, например из-за перегорания предохранителя. К двигателю при этом подводятся только две фазы и ток в статоре резко возрастает, что приводит к выходу его из строя из-за нагрева обмотки до высокой температуры. Тепловые реле пускателя от этих токов должны срабатывать и отключать двигатель.
При включении асинхронного двигателя пусковой ток в 6 раз превышает номинальный. При таком токе даже незначительная вибрация контактов быстро выводит их из строя. Это накладывает высокие требования в отношении вибрации и износа контактов. С целью уменьшения времени вибрации контакты и подвижные части контакторов магнитного пускателя делаются возможно легче, уменьшается их скорость, увеличивается контактное нажатие.
При номинальных токах до 100 А целесообразны серебряные накладки на медных контактах. При токе выше 100 А эффективна композиция серебра и оксида кадмия.
После разгона двигателя ток падает до номинального значения. Поэтому отключение работающего двигателя происходит при меньшей токовой нагрузке контактов.
При отключении двигателя восстанавливающееся напряжение на контактах равно разности напряжения сети и ЭДС двигателя. В результате на контактах контактора появляется напряжение, составляющее 15—20% Uном, т.е. отключение происходит в облегченных условиях.
Нередки случаи, когда двигатель необходимо отключить от сети сразу после пуска. В этих случаях контактор пускателя отключает ток, равный шестикратному номинальному при низком коэффициенте мощности (cos < 0,3) и восстанавливающемся напряжении, равном номинальному напряжению сети. По действующим нормам после 50-кратного включения и отключения заторможенного двигателя пускатель должен быть пригоден для дальнейшей работы. В технических данных магнитных пускателей указываются их номинальный ток и номинальная мощность двигателя при различных напряжениях. Поскольку ток, отключаемый пускателем, относительно мало падает с ростом напряжения, мощность двигателя, с которым может работать данный пускатель, возрастает с увеличением номинального напряжения. Наибольшее рабочее напряжение пускателей равно 660 В.
Электрическая износостойкость контакторов пускателя обратно пропорциональна мощности управляемого электродвигателя в степени 1,5—2. Для повышения срока службы пускателя его необходимо выбирать на ток, превышающий номинальный ток двигателя.
Двигатели меньшей мощности быстрее достигают номинально' частоты вращения. Поэтому при их отключении разрывается установившийся номинальный ток, что облег