
- •Содержание
- •Глава 1. Основные понятия, используемые в математической обработке психологических данных..... ... 11
- •4.4. Задачи для самостоятельной работы ....... 152
- •Предисловие автора
- •Как читать эту книгу и как ею пользоваться
- •Глава 1
- •Основные понятия, используемые
- •В математической обработке
- •Психологических данных
- •1.1. Признаки и переменные
- •1.2. Шкалы измерения
- •1.3. Распределение признака. Параметры распределения
- •1.4. Статистические гипотезы
- •Направленные гипотезы
- •Ненаправленные гипотезы
- •1.5. Статистические критерии
- •Параметрические критерии
- •Непараметрические критерии
- •1.6. Уровни статистической значимости
- •Правило отклонения h0 и принятия h1
- •1.7. Мощность критериев
- •1.8. Классификация задач и методов их решения
- •1.9. Принятие решения о выборе метода математической обработки
- •Алгоритм 1
- •Алгоритм 2
- •1.10. Список обозначений Латинские обозначения:
- •Греческие обозначения:
- •Глава 2 выявление различий в уровне исследуемого признака
- •2.1. Обоснование задачи сопоставления и сравнения
- •Алгоритм 3 Подсчет критерия q Розенбаума
- •Правила ранжирования
- •Алгоритм 4 Подсчет критерия u Манна-Уитни.
- •Алгоритм 5 Подсчет критерия н Крускала-Уоллиса
- •Алгоритм 6 Подсчет критерия s Джонкира
- •2.6. Задачи для самостоятельной работы
- •2.7. Алгоритм принятия решения о выборе критерия для сопоставлений
- •Глава 3 оценка достоверности сдвига в значениях исследуемого признака
- •3.1. Обоснование задачи исследований изменений
- •Алгоритм 8 Расчет критерия знаков g
- •Алгоритм 9 Подсчет критерия т Вилкоксона
- •3.4. Критерий χ2r Фридмана
- •Алгоритм 10 Подсчет критерия χ2r Фридмана
- •Алгоритм 11 Подсчет критерия тенденций l Пейджа
- •3.6. Задачи для самостоятельной работы
- •3.7. Алгоритм принятия решения о выборе критерия оценки изменений
- •Глава 4 выявление различий в распределении признака
- •4.1. Обоснование задачи сравнения распределений признака
- •4,2. Χ2 критерий Пирсона
- •Шутливый пример
- •Алгоритм 13 Расчет критерия χ2
- •Алгоритм 14 Расчет абсолютной величины разности d между эмпирическим и равномерным распределениями
- •Алгоритм 15 Расчет критерия λ при сопоставлении двух эмпирических распределений
- •4.4. Задачи для самостоятельной работы .
- •Глава 5 многофункциональные статистические критерии
- •5.1. Понятие многофункциональных критериев
- •5.2. Критерий φ* — угловое преобразование Фишера
- •Алгоритм 17 Расчет критерия φ*
- •5.3. Биномиальный критерий ш Назначение критерия m
- •Алгоритм 18 Применение биномиального критерия m
- •5.4. Многофункциональные критерии как эффективные заменители традиционных критериев
- •5.5. Задачи для самостоятельной работы
- •5.6. Алгоритм выбора многофункциональных критериев
- •Глава 6 метод ранговой корреляции
- •6.1. Обоснование задачи исследования согласованных действий
- •6.2. Коэффициент ранговой корреляции rs Спирмена
- •Алгоритм 20 Расчет коэффициента ранговой корреляции Спирмена rs.
- •Глава 7 дисперсионный анализ
- •7.1. Понятие дисперсионного анализа
- •7.2. Подготовка данных к дисперсионному анализу
- •1) Создание комплексов
- •2) Уравновешивание комплексов
- •3) Проверка нормальности распределения результативного признака.
- •4) Преобразование эмпирических данных с целью упрощения расчетов
- •7.3. Однофакторный дисперсионный анализ для несвязанных выборок
- •7.4. Дисперсионный анализ для связанных выборок
- •Глава 8 дисперсионный двухфакторный анализ
- •8.1. Обоснование задачи по оценке взаимодействия двух факторов
- •8.2. Двухфакторный дисперсионный анализ для несвязанных выборок
- •8.3. Двухфакторный дисперсионный анализ для связанных выборок
- •Глава 9 решения задач с комментариями
- •9.1. Рекомендации по решению задач
- •9.2. Решения задач Главы 2
- •9.3. Решения задач Главы 3
- •Вопрос 1: Ощущаются ли участниками значимые сдвиги в уровне владения каждым из трех навыков после тренинга?
- •Вопрос 2: Произошли ли по трем видам навыков разные сдвиги или эти сдвиги для разных навыков примерно одинаковы?
- •Вопрос 3: Уменьшается ли расхождение между "идеальным" и реальным уровнями владения навыками после тренинга?
- •9.4. Решения задач Главы 4
- •Вопрос 1: Можно ли утверждать, что разные картины методики Хекхаузена обладают разной побудительной силой в отношении мотивов: а) "надежда на успех"; б) "боязнь неудачи"?
- •Вопрос 2: Можно ли считать стимульный набор методики Хекхаузена неуравновешенным по направленности воздействия?
- •Вопрос 1: Можно ли утверждать, что распределение запретов не является равномерным?
- •Вопрос 2: Можно ли утверждать, что запрет "Не проси" встречается достоверно чаще остальных?
- •Вопрос 1: Различаются ли распределения предпочтений, выявленные по каждому из четырех типов мужественности, между собой?
- •Вопрос 2. Можно ли утверждать, что предпочтение отдается какому-то одному или двум типам мужественности? Наблюдается ли какая-либо групповая тенденция предпочтений?
- •9.5. Решения задач Главы 5
- •Вопрос 1: Можно ли считать, что милиционеры патрульно-постовой службы в большей степени склонны продолжить разговор с агрессором, чем другие граждане?
- •Вопрос 2: Можно ли утверждать, что милиционеры склонны отвечать агрессору более примирительно, чем гражданские лица?
- •316 Приложение 1
- •330 Приложение 1
- •340 Приложение 1
- •344 Приложение 1
- •Глава 1. Основные понятия» используемые в математической
- •Глава 3. Оценка достоверности сдвига в значениях
- •Глава 4. Выявление различий в распределении признака. . По
- •Глава 5. Многофункциональные статнстнческне критерии . 157
- •Глава 8. Дисперсионный двухфакторнын анализ..... 246
Вопрос 1: Можно ли утверждать, что распределение запретов не является равномерным?
Поскольку количество разрядов (запретов) k>3, и перечень из пяти запретов представляет собой номинативную шкалу, мы можем использовать только критерий χ2.
Если бы участники тренинга называли разные запреты с одинаковой частотой, то каждый из пяти запретов встречался бы равновероятно с остальными.
Сформулируем гипотезы.
H0: Распределение частот встречаемости пяти запретов не отличаетсяот равномерного распределения.
H1: Распределение частот встречаемости пяти запретов отличается от равномерного распределения.
Определим fтеор по формуле:
где n - общее количество наблюдений, в данном случае названных запретов (n =281); k - количество категорий запретов (k =5).
fтеор =281/5=56,2
Определим число степеней свободы v:
v = k -l=5-l=4.
Поправки на непрерывность делать не требуется. Все расчеты представим в таблице, строго следуя Алгоритму 13.
Таблица 9.16
Расчет критерия χ2 при сопоставлении эмпирического распределения частот встречаемости 5-и психологических запретов с равномерным распределением
Разряды - вид запрета |
Эмпирическая частота fэ |
Теоретическая частота fт |
fэ- fт |
(fэ- fт)2 |
(fэ- fт)2/ fт |
1, Не давай психологических поглаживаний 2. Не принимай... 3. Не проси... 4. Не отказывайся... 5. Не давай себе... |
44
45 98 58 36 |
56,2
56,2 56,2 56,2 56,2 |
-12,2
-11,2 +41,8 +1,8 -20,2 |
148,8
125,4 1747,2 3,2 408,0 |
2,65
2,23 31,09 0,06 7,26 |
Суммы |
281 |
281 |
0 |
|
43,29 |
Определим критические значения χ2 по Таблице IX Приложения 1 для v=4:
Построим "ось значимости"
Ответ: χ2эмп > χ2кр (р≤0,01)
H0 отклоняется. Принимается H1. Распределение частот встречаемости пяти психологических запретов отличается от равномерного распределения (р<0,01).