
- •История развития архитектуры эвм
- •Нулевое поколение (1492 – 1945)
- •Первое поколение (1937-1953)
- •Второе поколение (1954 - 1962)
- •Третье поколение (1963-1972)
- •Четвертое поколение (1972-1984)
- •Пятое поколение (1984-1990)
- •Шестое поколение (1990-)
- •Концепция машины с хранимой в памяти программой
- •Принцип двоичного кодирования
- •Принцип программного управления
- •Принцип однородности памяти
- •Принцип адресности
- •Типы структур вычислительных машин и систем
- •Структуры вычислительных машин
- •Структуры вычислительных систем
- •Процессор. Структурная схема процессора. Понятие о микропрограммном управлении Структурная схема процессора
- •Алгоритмы выполнения операций. Микропрограммы
- •Синтез микропрограммного автомата. Синтез устройства управления
- •Обратная структурная таблица
- •Управляющие автоматы с программируемой логикой
- •Адресная структура памяти
- •Принципы построения устройств памяти
- •Адресная, ассоциативная и стековая организация памяти
- •Адресная память
- •Ассоциативная память
- •Стековая память
- •Команды процессора
- •Методы повышения производительности работы процессора
- •1.Конвейеризация (конвейер операций)
- •2. Процессоры с risc – архитектурой
- •3. Организация кэш-памяти
- •3.1. Техническая идея кэш-памяти
- •3.2. Архитектура кэш-памяти
- •3.2.1. Кэш память с прямым отображением
- •3.2.2. Полностью ассоциативная кэш память
- •3.2.3. Частично ассоциативная кэш память
- •3.3 Алгоритм замещения строк в кэш памяти
- •3.4 Методы записи в кэш память
- •Микропроцессор Intel 80i86
- •Страничная организация памяти
- •Буфер ассоциативной трансляции
- •Организация виртуальной памяти
- •Встроенные средства защиты информации в микропроцессорах фирмы intel
- •1. Концепции и компоненты защищенного режима
- •Независимость подготовки пользовательских программ и их защита от взаимных помех.
- •Защита программ операционной системы от помех при сбоях в программах пользователей.
- •Защита программ ос верхнего уровня от помех при сбоях в программах ос нижнего уровня.
- •Защита программ от отрицательных последствий при программных сбоях.
- •Защита целостности функционирования вычислительной системы.
- •2. Информационная основа работы механизма защиты
- •3. Уровни привилегий
- •Концепция уровней привилегий.
- •Задание уровней привилегий.
- •Проверка корректности использования отдельных команд.
- •Защита данных.
- •4.3 Защита программ.
- •Принципы организации системы прерывания
- •Программируемый контроллер прямого доступа к памяти
- •Лабораторная работа №1
- •Размещение байт и слов в памяти.
- •Лабораторная работа №2
- •Список операций
Встроенные средства защиты информации в микропроцессорах фирмы intel
1. Концепции и компоненты защищенного режима
Защищенный режим работы в МП INTEL предусматривает аппаратную поддержку различных вариантов защиты информации от помех. Предусмотренные возможности и глубина защиты определяются используемыми операционными системами.
Необходимость в защите информации появилась при переходе на многопрограммный режим работы. ЭВМ, допускающие многопрограммный режим работы, должны обеспечивать следующие требования:
1. Независимость подготовки пользовательских программ и их защита от
взаимных помех;
2. Защиту программ операционной системы от помех при сбоях в программах
пользователей;
-
Защиту программ операционной системы верхнего уровня от помех при сбоях в программах операционной системы нижнего уровня;
-
Защиту программ от отрицательных последствий при программных сбоях;
-
Защиту целостности системы.
Рассмотрим, как обеспечиваются перечисленные требования в МП INTEL.
-
Независимость подготовки пользовательских программ и их защита от взаимных помех.
При разработке своей программы пользователь не должен учитывать взаимное расположение своей и других программ в оперативной памяти и может рассчитывать на любое место в памяти. Микропроцессор при этом предусматривает возможность локализации негативных последствий программных ошибок в пределах адресных пространств соответствующих программ. Это решается механизмом управления виртуальной памяти. Виртуальная память предусматривает гибкое программное распределение ресурсов памяти, динамическую переадресацию и разделение адресных пространств совместно выполняемых программ.
Виртуальная память допускает многопрограммное выполнение прикладных программ, но при этом программы изолируются друг от друга таким образом, что ошибки в одной из них не влияют на корректное выполнение других программ. Когда программа осуществляет некорректное обращение к памяти, механизм виртуальной памяти блокирует обращение и сообщает ОС о попытке нарушения защиты. В МП INTEL реализованы два уровня виртуальной памяти - верхний и нижний. Верхний уровень реализован механизмом трансляции сегментов, а нижний уровень – механизмом трансляции страниц.
На уровне трансляции сегментов разделение адресных пространств пользовательских программ осуществляется при помощи локальных таблиц дескрипторов (LDT) сегментов. Доступ к сегментам осуществляется только через таблицы дескрипторов. Загрузка сегмента в память (оперативную или внешнюю) производится в любую ее свободную область. При этом в дескрипторе сегмента фиксируется базовый (начальный) адрес сегмента. Таким образом, таблица дескрипторов определяет не только общий объем адресного пространства программы, но и конкретное размещение сегментов программы в физической памяти за счет указания базовых адресов и размеров сегментов. Это является основой разделения адресных пространств программ пользователей, поскольку у каждой пользовательской программы есть своя локальная таблица дескрипторов (LDT), недоступная программам других пользователей. Эта таблица определяет доступ к физическим адресам соответствующих сегментов. Следовательно, пользовательские программы могут видеть только свое адресное пространство.
Многопользовательские режимы должны не только разделять программы пользователей. В некоторых случаях требуется совместная работа нескольких пользовательских программ. Для этого требуется не локальная, а разделяемая память. Разделяемая между несколькими программами память легко организуется при помещении дескрипторов соответствующих сегментов в общую глобальную таблицу дескрипторов (GDT) или дублированием дескрипторов разделяемых сегментов в локальных таблицах дескрипторов (LDT).
На уровне трансляции страниц разделение адресных пространств пользователей производится при разделении таблиц страниц. Каждая программа использует свою таблицу страниц, которая определяет доступ только к своим страницам.
Таким образом, используя механизм виртуальной памяти, удается эффективно разделить программы так, что они не влияют друг на друга и взаимно защищены друг от друга.