
- •Классы неорганических соединений
- •1. Классификация простых веществ.
- •2. Классификация сложных веществ.
- •Химические свойства оксидов
- •2. Гидроксиды
- •А. Кислоты
- •Химические свойства кислот
- •В. Основания
- •Химические свойства оснований
- •С. Амфотерные основания
- •Химические свойства амфотерных оснований
- •Способы получения кислых солей и перевод их в средние
- •Способы получения основных солей и перевод их в средние
- •Экспериментальная часть Опыт 1. Свойства основных и кислотных оксидов
- •Опыт 2. Свойства оснований и кислот.
- •Опыт 3. Способы получения солей
- •Вопросы для самоконтроля
- •Лабораторная работа №2 Тепловые эффекты растворения веществ.
- •Определение энтальпии растворения соли (кислоты или основания).
- •Лабораторная работа № 3 Определение скорости химической реакции
- •Экспериментальная часть Опыт 1. Влияние концентраций реагирующих веществ на скорость химической реакции в гомогенной системе.
- •Опыт 2. Влияние температуры на скорость химической реакции
- •Опыт 3. Влияние величины поверхности раздела реагирующих веществ на скорость реакции в гетерогенной системе
- •Вопросы для самоконтроля
- •Лабораторная работа №4 Определение константы химического равновесия и равновесных концентраций.
- •Экспериментальная часть Опыт 1. Влияние концентрации реагирующих веществ на состояние химического равновесия
- •Результаты опыта №1
- •Опыт 2. Влияние температуры на состояние химического равновесия
- •Вопросы для самоконтроля
- •Лабораторная работа № 5 Растворы электролитов.
- •Лабораторная работа №6 Электрохимические процессы.
- •I. Гальванические элементы и коррозия металлов.
- •1.Понятие об электродном потенциале.
- •2. Стандартные электродные потенциалы металлов. Ряд напряжений.
- •II. Процессы электролиза.
- •Экспериментальная часть
- •Лабораторная работа №7 Химические свойства металлов
- •Порядок выполнения работы
II. Процессы электролиза.
В растворах и расплавах электролитов имеются разноименные по знаку ионы (катионы и анионы), которые находятся в хаотическом движении. Если в такой раствор или расплав электролита погрузить электроды и пропустить постоянный электрический ток, то ионы будут двигаться к электродам: катионы - к катоду (электроду, присоединенному к отрицательному полюсу источника тока), а анионы - к аноду (присоединенному к положительному полюсу источника тока).
Катионы, достигнув катода, принимают от него электроны и восстанавливаются; анионы, достигнув анода, отдают электроны и окисляются.
Суммарный электрохимический процесс, охватывающий раздельное, но одновременно протекающие на электродах процессы окисления и восстановления за счет электронов электрического тока, возбуждаемого внешней электродвижущей силой, называется электролизом.
Электролизер прибор, к котором проводят электролиз (Рис. 3).
Процессы
в расплавленных электролитах
наиболее простой случай электролиза.
Более сложные процессы протекают при
электролизер в водных растворов
электролитов, так как в водных растворах
всегда присутствуют ионы Н+
и ОН , также
участвующие в процессах. Из нескольких
возможных процессов будет протекать
тот, осуществление которого сопряжено
с минимальной затратой энергии. Это
означает, что на катоде будут
восстанавливаться катионы, имеющие
наибольший электродный потенциал, а на
аноде будут окисляться анионы с наименьшим
электродным потенциалом.
Последовательность
разрядки катионов (восстановление на
катоде) можно установить в соответствии
со стандартным потенциалом, при этом
нужно учитывать величину потенциала
процесса восстановления ионов водорода.
Стандартный потенциал водорода, равный
0, относится к концентрации ионов Н+,
равной 1, т.е. рН = 0. В случае нейтральных
растворов ( рН=7) концентрация ионов Н+
равна 10-7,
согласно формуле Нернста потенциал
равен: Е = - 0,41В.
По способности восстанавливаться катионы можно разделить на 3 группы:
-
К
атионы металлов, у которых стандартный электродный потенциал больше -0,41В (от Cd2+ до Au3+), практически полностью восстанавливаются: например Cu2++ 2 е = Cu0
-
Катионы металлов с малой величиной стандартного электродного потенциала ( от Li+ до Al3+ включительно) не восстанавливаются, а вместо них происходит восстановление ионов водорода из воды:
2Н2О
+ 2 е
= Н2 +
2 ОН
-
Катионы металлов, имеющих стандартный электродный потенциал меньший -0,41 В, но больший, чем у алюминия (от Mn2+ до Cd2+), восстанавливаются одновременно с ионами водорода из воды.
Последовательность разрядки анионов (окисление на аноде) зависит, как от присутствия молекул воды, так и от вещества, из которого сделан анод.
Обычно аноды подразделяют на нерастворимые и растворимые. Нерастворимые аноды изготовляют из угля, графита, платины; растворимые из меди, серебра, цинка, кадмия, никеля и других металлов.
На
нерастворимом аноде легко происходит
окисление анионов бескислородных кислот
(например, S2;
J-;
Br
-;
Cl-)
2Cl
- 2 e
= Cl20
. Если раствор содержит анионы
кислородосодержащих кислот (например,
SO42-;
NO3-;
CO32-;
PO43-),
то окисляются не эти ионы, а молекулы
воды: 2Н2О
- 4 е = О2
+ 4 Н+
Растворимый
анод при электролизе сам подвергается
окислению. При отдаче металлом электронов
равновесие между электродом и раствором
смещается:
Ме
Ме
n+
+ ne
(металл анода) (уходят в раствор) (уходят во внешнюю цепь)
и анод растворяется.
Пример 1: ЭЛЕКТРОЛИЗ РАСТВОРА НИТРАТА КАЛИЯ.
KNO3 = K+ + NO3
H2O H+ + OH
K (-) А (+)
К+;
Н+
(из Н2О)
NO3
; ОН ; (
из Н2О)
2НОН
+ 2 е = Н2
+2ОН
2НОН - 4 е
= О2
+ 4Н+
рН > 7 рН < 7
Пример 2: ЭЛЕКТРОЛИЗ РАСТВОРА НИТРАТА СЕРЕБРА
( угольный анод)
Ag
NO3
= Ag+
+ NO3
H2O
H+
+
HO
К (-) А (+)
Ag +; Н+ (из Н2О) NO3; OH (из Н2О)
Ag+
+ e
= Ag0
2HOH
- 4
e =
O2
+
4
H+
рH = 7 pH<7
Пример 3: ЭЛЕКТРОЛИЗ РАСТВОРА НИТРАТА СЕРЕБРА.
(анод серебряный)
AgNO3 = Ag+ + NO3
H2O
H+
+ OH
K(-) A(+)
Ag+; H+ ( из Н2О) Ag; NO3; OH- ( из Н2О)
Ag+
+ e
=Ag0
Ag0
e
=
Ag+
Происходит растворение анода, так как он окисляется.