
- •Г.Л. Бродецкий
- •Москва - 2010
- •Предисловие
- •Раздел I. Оптимизация решЕний для систем логистики в условиях неопределенности. Критерии выбора и их модификации
- •Глава 1. Классические критерии принятия решений в условиях неопределенности. Особенности их использования при оптимизации систем логистики
- •Максиминный критерий (мм-критерий или критерий Вальда).
- •Оптимистический критерий (или h-критерий).
- •Нейтральный критерий (n-критерий).
- •Критерий Сэвиджа (s-критерий).
- •Модификация максиминного критерия: привязка выбора к утопической точке (мМmod(ут) -критерий)
- •Иллюстрации и приложения к задаче выбора способа поставки товара
- •Этап выбора оптимального решения
- •Вопросы (к главе 1)
- •Глава 2. Производные критерии принятия решений в условиях неопределённости. Особенности их использования при оптимизации систем логистики
- •Критерий Гурвица (hw-критерий).
- •Критерий произведений (p-критерий).
- •Критерий Гермейера (g-критерий).
- •4. Модифицированный g(mod)-критерий Гермейера
- •5. Критерий наиболее вероятного исхода.
- •Иллюстрации и приложения к задаче выбора способа поставки товара (продолжение в формате производных критериев)
- •Вопросы (к главе 2)
- •Глава 3. Составные критерии принятия решений в условиях неопределенности. Особенности их использования при оптимизации систем логистики
- •1. Общая схема составного критерия
- •Составные х(мм) – критерии.
- •3. Составные X(s) – критерии.
- •Иллюстрации и приложения к задаче выбора способа поставки товара (продолжение в формате составных критериев)
- •Вопросы (к главе 3)
- •Раздел II. Специальные модификации критериев оптимизации решений в условиях неопределенности
- •Глава 4. Модификации критериев оптимизации в условиях неопределённости, обусловливаемые требованиями «привязки» выбора к утопической точке. Особенности их использования в системах логистики
- •1. Модифицированный критерий Гурвица применительно к матрице потерь Сэвиджа (hWmod(s) - критерий)
- •2. Модификация hw критерия: привязка к утопической точке (hWmod(ут) -критерий)
- •3. Модифицированный критерий произведений: «привязка» к утопической точке (Pmod (ут) – критерий)
- •4. Модифицированный критерий произведений: «привязка» к матрице потерь Сэвиджа (Pmod (s) – критерий)
- •Выбор на основе модифицированного критерия Гермейера: привязка к утопической точке (gут (mod) -критерий)
- •Выбор на основе метода идеальной точки
- •Иллюстрации и приложения к задаче выбора способа поставки товара (продолжение в формате методов главы 4)
- •Вопросы (к главе 4)
- •Глава 5. Феномен блокировки выбора для стратегий диверсификации поставок при оптимизации логистических систем в условиях неопределенности
- •1. Специфика задач оптимизации решений в условиях неопределенности при управлении запасами
- •2. Феномен роста издержек для стратегий диверсификации поставок в моделях управления запасами
- •3. Суть феномена «блокировки» выбора альтернатив для стратегий диверсификации объемов поставок между поставщиками при управлении запасами
- •Частичный сдвиг линий уровня критерия как возможность обойти феномен «блокировки» выбора альтернатив, ориентирующих лпр на диверсификацию объемов поставок между поставщиками
- •Специальный синтез процедур оптимизации для критериев Сэвиджа и Гермейера (sg(ут)-критерий)
- •6. Специфика управления наклоном направляющей для линий уровня критерия (sGk(ут)-критерий)
- •Синтез процедур оптимизации модифицированного критерия Гермейера и процедур «нацеливания» на утопическую точку поля полезностей (Gk(ут)(mod)-критерий)
- •Вопросы (к главе 5)
- •Глава 6. Особенности специальных модификаций, допускающих возможность частичного сдвига линий уровня критерия к утопической точке поля полезностей для адаптации к предпочтениям лпр
- •Специфика процедур модификации критерия на основе частичного сдвига его линий уровня к утопической точке поля полезностей
- •Алгоритм γ(ут)-модификации для мм-критерия (мм γ(ут)-критерий)
- •Возможность оценки и выбора параметра γ для конкретного лпр при γ(ут)-модификации в формате критерия пессимизма
- •Дополнительная специфика процедур выбора наилучшего решения на основе мМγ(ут)-критерия
- •Γ(ут)-модификация для критерия Гурвица (hWγ(ут)-критерий)
- •Возможность оценки и выбора параметра γ для конкретного лпр при γ(ут)-модификации в рамках критерия Гурвица
- •Γ(ут)-модификация для критерия произведений (р γ(ут)-критерий)
- •Алгоритм частичного сдвига линий уровня для критерия идеальной точки (иТγ(эт)-критерий)
- •Вопросы (к главе 6)
- •Раздел III. Приложения методов оптимизации решений в условиях неопределенности к моделированию систем управления запасами
- •Глава 7. Особенности оптимизации системы управления запасами в условиях неопределенности
- •1. Атрибуты модели управления запасами в условиях неопределенности
- •2. Процедуры формализации модели управления запасами в условиях неопределенности
- •3. Процедуры оптимизации стратегии управления запасами в условиях неопределенности
- •4. Оптимальная стратегия с учетом позиции лпр к неопределенности конечного результата: традиционные критерии
- •Выбор на основе оптимистического критерия (h - критерий). Целевая функция оптимистического критерия:
- •Выбор на основе нейтрального критерия (n - критерий). Целевая функция нейтрального критерия:
- •Выбор на основе критерия Сэвиджа (s - критерий). Целевая функция критерия Сэвиджа:
- •5. Оптимальная стратегия: модифицированные критерии
- •6. Оптимальная стратегия: специальные модификации на основе сдвига линий уровня критерия к ут
- •Глава 8. Специфика алгоритмов оптимизации системы управления запасами в условиях неопределенности с учетом временной стоимости денег
- •1. Особенности формализации матрицы полезностей с учетом временной стоимости денег
- •2. Сравнительный анализ с вариантом модели без учета временной стоимости денег
- •3. Иллюстрация особенностей реализации алгоритмов оптимизации решений в условиях неопределенности с учетом временной стоимости денег
- •Традиционные критерии
- •Выбор на основе оптимистического критерия (h – критерий). Реализация соответствующих процедур представлена в табл. 8.8.
- •Выбор на основе нейтрального критерия (n – критерий). Реализация соответствующих процедур представлена в табл. 8.9.
- •Выбор на основе критерия Сэвиджа (s – критерий). Сначала переходим к матрице потерь, по которой найдем оптимальное решение. Реализация соответствующих процедур представлена в табл. 8.10.
- •Продолжим иллюстрацию процедур выбора наилучшего решения. Реализуем такие процедуры на основе модифицированных критериев, которые были представлены во второй части книги.
- •Оптимальная стратегия: модифицированные критерии
- •Глава 9. Оптимизация процедур диверсификации поставок при управлении запасами в условиях неопределенности
- •Атрибуты модели диверсификации поставок при управлении запасами в условиях неопределенности
- •2. Формализация модели для оптимального выбора стратегии диверсификации поставок в условиях неопределенности
- •Процедуры структуризации стратегий диверсификации поставок при управлении запасами в условиях неопределенности
- •4. Оптимальная стратегия: традиционные критерии
- •Библиорафический список
2. Сравнительный анализ с вариантом модели без учета временной стоимости денег
Если реализовать выбор альтернативы с использованием предложенных выше процедур учета временной структуры процентных ставок на рынке, причем применительно к частному случаю r = 0, то он должен совпадать с выбором для ситуации, когда временная стоимость денег не учитывается. Убедимся, что это положение выполняется. Поэтому сначала подчеркнем следующее. После формализации матрицы полезностей (применительно к анализируемой модели оптимизации стратегии управления запасами с учетом временной стоимости денег) дальнейшие процедуры выбора наилучшего решения (применительно к конкретному критерию, который задает ЛПР) реализуются по тем же алгоритмам, как и в рамках оптимизационной модели без учета временной структуры процентных ставок. Таким образом, достаточно провести требуемый сравнительный анализ только применительно к соответствующим элементам матриц полезностей (с учетом временной структуры процентных ставок на рынке и без ее учета).
Напомним, что в
предыдущей главе мы анализировали
вариант рассматриваемой модели
оптимизации решений при управлении
запасами в условиях неопределенности
именно для ситуации, когда учет временной
стоимости денег отсутствует. Применительно
к представленному в этой главе алгоритму
анализа (уже с учетом временной структуры
процентных ставок и соответственно
временной стоимости денег) указанная
модель принятия решений соответствует
следующему предельному случаю: r
→ 0. Действительно, соответствующие
процедуры наращения денежных сумм к
выбранному моменту времени в конце года
для такой ситуации анализа уже не
понадобятся. Понятно, что при этом,
очевидно, имеет место также и следующий
предельный случай
→ 0. Для модифицированных выражений
применительно к каждому из слагаемых,
определяющих показатель прибыли Pr
в (**), для указанного предельного случая,
когда
= 0, имеем (полагая K = D/q):
Cs(год) = q∙ Cs∙K = D ∙ Cs;
C0(год) = C0 ∙K = C0∙D/q;
Ch(год) = q2∙Ch∙K/2D = q∙Ch/2;
CП(год) = K∙q∙СП = D ∙СП.
Полученные в результате предельного перехода формулы для каждого из слагаемых при определении показателя прибыли Pr в (**) полностью совпадают с аналогичными формулами в (*) в формате оптимизационной модели без учета временной стоимости денег.
Соответственно
можно сделать следующий вывод. Для
показателя прибыли Pr
в предельном случае, когда
= 0 (аналогично и r = 0),
т.е. когда временная стоимость денег не
учитывается, получаем именно приведенное
ранее выражение (*), соответствующее
формату анализируемой модели оптимизации
стратегии управления запасами в условиях
неопределенности, но без учета временной
структуры процентных ставок. Другими
словами, представленные (в рамках
алгоритма, который позволяет учитывать
временную стоимость денег) формулы (**)
являются обобщением формул (*) для
классического варианта модели принятия
решений в условиях неопределенности
без учета временной структуры процентных
ставок.