Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Lab5 - М-файлы и основы программирования в MatL....doc
Скачиваний:
19
Добавлен:
03.11.2018
Размер:
252.93 Кб
Скачать

2.4.2. Файл-функции с несколькими входными аргументами

Написание файл-функций с несколькими входными аргументами практически не отличается от случая с одним аргументом. Все входные аргументы размещаются в списке через запятую. Например, следующий листинг содержит файл-функцию, вычисляющую длину радиус-вектора точки трехмерного пространства

Листинг файл-функции с несколькими аргументами

function r = radius3(x, у, z)

r = sqrt(х.^2 + у.^2 + z.^2);

Для вычисления длины радиус-вектора теперь можно использовать функцию radius3, например:

» R = radius3(1, 1, 1)

R =

1.732

Кроме функций с несколькими входными аргументами, MatLab позволяет создавать функции, возвращающие несколько значений, т.е. имеющие несколько выходных аргументов.

2.4.3. Файл-функции с несколькими выходными аргументами

Файл-функции с несколькими выходными аргументами удобны при вычислении функций, возвращающих несколько значений (в математике они называются вектор-функциями). Выходные аргументы добавляются через запятую в список выходных аргументов, а сам список заключается в квадратные скобки. Хорошим примером является функция, переводящая время, заданное в секундах, в часы, минуты и секунды. Данная файл-функция приведена в следующем листинге.

Листинг функции перевода секунд в часы, минуты и секунды

function [hour, minute, second] = hms(sec)

hour = floor(sec/3600);

minute = floor((sec-hour*3600)/60);

second = sec-hour*3600-minute*60;

При вызове файл-функций с несколькими выходными аргументами результат следует записывать в вектор соответствующей длины:

» [Н, М, S] = hms(10000)

H =

2

М =

46

S =

40

2.5. Основы программирования в MatLab

Файл-функции и файл программы, используемые в предыдущих подразделах, являются самыми простыми примерами программ, Все команды MatLab, содержащиеся в них, выполняются последовательно. Для решения многих более серьезных задач требуется писать программы, в которых действия выполняются циклически или в зависимости от некоторых условий выполняются различные части программ. Рассмотрим основные операторы, задающие последовательности выполнения команд MatLab. Операторы можно использовать как в файл-процедурах, так и в функциях, что позволяет создавать программы со сложной разветвленной структурой.

2.5.1. Оператор цикла for

Оператор предназначен для выполнения заданного числа повторяющихся действий. Самое простое использование оператора for осуществляется следующим образом:

for count = start:step:final

команды MatLab

end

Здесь count  переменная цикла, start  ее начальное значение, final  конечное значение, а step  шаг, на который увеличивается count при каждом следующем заходе в цикл. Цикл заканчивается, как только значение count становится больше final. Переменная цикла может принимать не только целые, но и вещественные значения любого знака. Разберем применение оператора цикла for на некоторых характерных примерах.

Пусть требуется вывести семейство кривых для , которое задано функцией, зависящей от параметра для значений параметра от 0.1 до 0.1.

Наберите текст файл-процедуры в редакторе М-файлов и сохраните в файле FORdem1.m, и запустите его на выполнение (из редактора М-файлов или из командной строки, набрав в ней команду FORdem1 и нажав <Enter>):

% файл-программа для построения семейства кривых

x = [0:pi/30:2*pi];

for a = -0.1:0.02:0.1

y = exp(-a*x).*sin(x);

hold on

plot(x, y)

end

Замечание 4

Редактор М-файлов автоматически предлагает расположить операторы внутри цикла с отступом от левого края. Используйте эту возможность для удобства работы с текстом программы.

В результате выполнения FORdem1 появится графическое окно, которое содержит требуемое семейство кривых.

Напишите файл-программу для вычисления суммы

.

Алгоритм вычисления суммы использует накопление результата, т.е. сначала сумма равна нулю (S = 0), затем в переменную k заносится единица, вычисляется 1/k!, добавляется к S и результат снова заносится в S. Далее k увеличивается на единицу, и процесс продолжается, пока последним слагаемым не станет 1/10!. Файл-программа Fordem2, приведенная в следующем листинге, вычисляет искомую сумму.

Листинг файл-программы Fordem2 для вычисления суммы

% файл-программа для вычисления суммы

% 1/1!+1/2!+ … +1/10!

Обнуление S для накопления суммы

S = 0;

% накопление суммы в цикле

for k = 1:10

S = S + 1/factorial(k);

End

% вывод результата в командное окно

S

Наберите файл-программу в редакторе М-файлов, сохраните её в текущем каталоге в файле Fordem2.m и выполните. Результат отобразится в командном окне, т.к. в последней строке файл-программы S содержится без точки с запятой для вывода значения переменной S

S =

1.7183

Обратите внимание, что остальные строки файл-программы, которые могли бы повлечь вывод на экран промежуточных значений, завершаются точкой с запятой для подавления вывода в командное окно.

Первые две строки с комментариями не случайно отделены пустой строкой от остального текста программы. Именно они выводятся на экран, когда пользователь при помощи команды help из командной строки получает информацию о том, что делает Fordem2

>> help Fordem2

файл-программа для вычисления суммы

1/1!+1/2!+ … +1/10!

При написании файл-программ и файл-функций не пренебрегайте комментариями!

Все переменные, использующиеся в файл-программе, становятся доступными в рабочей среде. Они являются, так называемыми, глобальными переменными. С другой стороны, в файл-программе могут использоваться все переменные, введенные в рабочей среде.

Рассмотрим задачу вычисления суммы, похожую на предыдущую, но зависящую от переменной x

.

Для вычисления данной суммы в файл-программе Fordem2 требуется изменить строку внутри цикла for на

S = S + x.^k/factorial(k);

Перед запуском программы следует определить переменную x в командной строке при помощи следующих команд:

>> x = 1.5;

>> Fordem2

S =

3.4817

В качестве x может быть вектор или матрица, так как в файл-программе Fordem2 при накоплении суммы использовались поэлементные операции.

Перед запуском Fordem2 нужно обязательно присвоить переменной x некоторое значение, а для вычисления суммы, например из пятнадцати слагаемых, придется внести изменения в текст файл-программы. Гораздо лучше написать универсальную файл-функцию, у которой в качестве входных аргументов будут значение x и верхнего предела суммы, а выходным  значение суммы S(x). Файл-функция sumN приведена в следующем листинге.

Листинг файл-функции для вычисления суммы

function S = sumN(x, N)

% файл-функция для вычисления суммы

% x/1!+x^2/2!+ … +x^N/N!

% использование: S = sumN(x, N)

% обнуление S для накопления суммы

S = 0;

% накопление суммы в цикле

for m = 1:1:N

S = S + x.^m/factorial(m);

end

Об использовании функции sumN пользователь может узнать, набрав в командной строке help sumN. В командное окно выведутся первые три строки с комментариями, отделенные от текста файл-функции пустой строкой.

Обратите внимание, что переменные файл-функции не являются глобальными (m в файл-функции sumN). Попытка просмотра значения переменной m из командной строки приводит к сообщению о том, что m не определена. Если в рабочей среде имеется глобальная переменная с тем же именем, определенная из командной строки или в файл-программе, то она никак не связана с локальной переменной в файл-функции. Как правило, лучше оформлять собственные алгоритмы в виде файл-функций для того, чтобы переменные, используемые в алгоритме, не изменяли значения одноименных глобальных переменных рабочей среды.

Циклы for могут быть вложены друг в друга, при этом переменные вложенных циклов должны быть разными.

Цикл for оказывается полезным при выполнении повторяющихся похожих действий в том случае, когда их число заранее определено. Обойти это ограничение позволяет более гибкий цикл while.