
- •Новочеркасск 2008 Содержание
- •Тема №1 Модели и моделирование.
- •Погрешности численных методов.
- •Тема №2 Аппроксимация функций.
- •Интерполяционная формула Лагранжа.
- •Сплайны
- •Сплайны третьей степени
- •Метод наименьших квадратов
- •Тема №3 Решение нелинейных уравнений.
- •Метод половинного деления.
- •Метод простых итераций.
- •Метод Хорд
- •Метод Ньютона (касательных).
- •Тема №4 Решение систем линейных уравнений.
- •1) Прямые
- •2) Итерационные
- •Метод Гаусса.
- •Метод прогонки.
- •Уточнение решения (итерационный метод).
- •Метод Гаусса-Зейделя.
- •Тема №5 Решение систем не линейных уравнений.
- •Простой Итерации
- •Метод Ньютона для систем уравнений.
- •Метод возмущения параметров.
- •Тема №6 Численное интегрирование.
- •Метод прямоугольников.
- •Метод трапеции
- •Метод Симпсона.
- •Метод Гаусса.
- •Метод Монте-Карло.
- •Метод Монте-Карло для вычисления кратных интегралов.
- •Тема №7 Решение обыкновенных дифференциальных уравнений (оду).
- •Метод Эйлера.
- •Модифицированный метод Эйлера.
- •Метод Рунге – Кутта.
- •Метод Рунге-Кутта для решения систем оду
- •Метод Рунге-Кутта для оду высших порядков.
- •Метод стрельбы.
- •Метод конечных разностей (мкр) (метод сеток).
- •Тема №8 Решение дифференциальных уравнений с частными производными.
- •Уравнение теплопроводности.
- •Явная разностная схема для уравнения теплопроводности.
- •Неявная разностная схема для уравнения теплопроводности.
- •Тема №9 Задачи оптимизации.
- •Метод половинного деления.
- •Метод золотого сечения.
- •Метод покоординатного подъёма (спуска).
- •Метод градиентного подъёма (спуска).
- •Метод наискорейшего подъёма.
- •Тема №10 Задания для самостоятельной проработки. Транспортная задача.
- •Задача о ресурсах.
- •Волновое уравнение.
- •Уравнение Лапласа.
Тема №4 Решение систем линейных уравнений.
Системы линейных алгебраических уравнений (СЛАУ) в научно-исследовательской инженерной практике встречаются весьма часто. К решению систем линейных уравнений сводится многочисленные практические задачи с использованием численных методов.
Например:
Коэффициенты сплайнов находятся путем решения СЛАУ. К СЛАУ приводят уравнения частных производных.
Задачи по нахождению собственных значений также приводят к СЛАУ. Таким образом, решение СЛАУ – одна из самых распространенных и важных задач вычислительной математики.
Запишем СЛАУ в общем виде:
-
номер уравнения
- номер неизвестной, на которую умножается
коэффициент.
Коэффициенты образуют матрицу
Матрица системы столбец неизвестных величин столбец правых частей
Введя эти величины, мы можем записать СЛАУ в виде матричного решения
Важнейшей характеристикой квадратной
матрицы является её определитель()
Число возможных значений
В курсе высшей математики показывается, что система СЛАУ имеет единственное решение, если определитель системы не равен нулю. В этом случае решение может быть найдено с помощью формул Крамера:
,
где
- определитель матрицы, которая получается
после исключения в матрице А
-го
столбца и его замены столбцом свободных
членов.
Если определитель системы равен нулю,
то в этом случае матрица
называется вырожденной,
а система либо не имеет
решения, либо
имеет бесконечное множество решений.
Для некоторых систем решение оказывается
очень чувствительным к малым погрешностям
в исходных данных
.
Такие системы называются плохо-обусловленными.
Определитель плохо-обусловленных систем
близок к нулю. При численных вычислениях
всегда надо иметь ввиду эту особенность
систем линейных уравнений.
Существуют методы улучшения обусловленности систем. Некоторые некорректные задачи приводят к плохо обусловленным системам уравнений. Эти задачи могут иметь важное практическое значение. Существуют методы решения таких задач.
Методы решения СЛАУ делятся на 2 группы:
1) Прямые
используют готовые формулы для вычисления
неизвестных, эти методы наиболее
универсальны, пригодны для решения
широкого класса СЛАУ. Но они обладают
недостатками: они требуют
хранения в оперативной памяти сразу
всей матрицы. Существенным
недостатком прямых методов является
накапливание погрешности
в процессе решения. Это особенно
опасно для больших систем, а также для
плохо-обусловленных , поэтому прямые
методы используют обычно если
нескольких
сотен.
2) Итерационные
в итерационных методах решение находят путем последовательных приближений. Накапливание погрешности не происходит, и с помощью них решают систему с большим числом уравнений и для решения плохо-обусловленных систем. Однако сходимость итерации может быть очень медленной. Поэтому время счета может быть очень большим. Другим недостатком является то, что с их помощью решается ограниченный класс уравнений.
Например:
Уравнений с преобладанием диагональных элементов, либо системы со слабо заполненными матрицами.
Метод Крамера относится к прямому
методу, однако на практике метод Крамера
практически никогда не используется,
так как он требует большого объёма
вычислений. Оценим объём вычислений с
помощью метода Крамера. Для применения
этого необходимо вычислить
определитель, а для вычисления каждого
определителя необходимо сделать
произведений, а число полученных
слагаемых
.
Значит, число арифметических операций
будет
с ростом
резко возрастает при
Наиболее распространенным среди прямых методов является метод Гаусса.
Метод 14