
- •3. Асинхронная машина с заторможенным ротором.
- •4. Схема замещения асинхронной машины.
- •5. Электромагнитный момент и механическая характеристика асинхронного двигателя.
- •6. Регулирование асинхронных двигателей (запуск, торможение, изменение скорости вращения).
- •7. Рабочие характеристики асинхронных двигателей.
- •8. Неноминальные режимы работы асинхронных двигателей.
- •9. Асинхронные двигатели с массивным ротором.
- •12. Создание вращающегося магнитного поля трехфазной обмоткой.
- •13. Создание вращающегося магнитного поля двухфазной обмоткой. Двухфазные асинхронные двигатели.
- •14. Создание вращающегося магнитного поля однофазной обмоткой. Однофазные асинхронные двигатели.
- •Тема 10
- •1. Устройство и принцип действия синхронной электрической машины.
- •3. Электромагнитный момент, угловая и механическая характеристика синхронного двигателя.
- •5. Устройство и принцип действия синхронного генератора.
- •6. Запуск синхронного генератора.
- •1. Полупроводники. Собственная и примесная проводимость п/п.
- •3. Прямое и обратное включение pn-перехода.
- •4. Полупроводниковые диоды. Обозначение, схемы включения.
- •5. Биполярные транзисторы. Принципы работы, классификация, условные графические обозначения и схемы включения.
- •6. Полевые транзисторы. Принципы работы, классификация, условные обозначения и схемы включения.
- •7. Режимы работы транзистора. Режим отсечки (закрыт).
- •8. Режимы работы транзистора. Режим насыщения.
- •9. Режимы работы транзистора. Активный режим.
- •10. Усилительные свойства транзистора. Каскад с общим эмиттером.
- •11. Усилители электрических сигналов. Классификация. Дифференциальный усилитель.
- •12. Усилители электрических сигналов. Классификация. Операционный усилитель.
- •13. Усилители постоянного тока, импульсные усилители.
- •Электрические импульсы и их параметры.
- •2. Ключевой режим работы транзистора. Нормально замкнутый и нормально-разомкнутый ключ.
- •4. Цифровые узлы комбинационного типа. Шифраторы и дешифраторы, сумматоры.
- •5. Цифровые узлы с памятью. Триггеры, регистры, счетчики.
- •1. Измерения тока и напряжения.
- •2. Измерения мощности и энергии.
- •3. Измерения неэлектрических величин. Датчики давления, уровня, расхода, механического перемещения.
3. Асинхронная машина с заторможенным ротором.
Асинхронная машина с заторможенным ротором работает как трансформатор. Основной магнитный поток индуктирует в статорной и в неподвижной роторной обмотках ЭДС Е1 и Е2к.
;
где Фm - максимальное значение основного магнитного потока, сцепленного со статорной и роторной обмотками; W1 и W2 - числа витков статорной и роторной обмоток; f1 - частота напряжения в сети; K01 и K02 - обмоточные коэффициенты статорной и роторной обмоток.
Чтобы получить более благоприятное распределение магнитной индукции в воздушном зазоре между статором и ротором, статорные и роторные обмотки не сосредоточивают в пределах одного полюса, а распределяют по окружностям статора и ротора. ЭДС распределенной обмотки меньше ЭДС сосредоточенной обмотки. Этот факт учитывается введением в формулы, определяющие величины электродвижущих сил обмоток, обмоточных коэффициентов. Величины обмоточных коэффициентов несколько меньше единицы. ЭДС в обмотке вращающегося ротора
Ток ротора работающей машины
где R2 - активное сопротивление роторной обмотки; х2 - индуктивное сопротивление роторной обмотки.
где х2к- индуктивное сопротивление заторможенного ротора.
4. Схема замещения асинхронной машины.
Схема
замещения позволяет определить токи,
потери мощности
и падения напряжения в асинхронной
машине. При
этом нужно учитывать, что в обмотке
вращающегося ротора
проходит ток, действующее значение и
частота которого
зависят от частоты вращения.
Схема замещения обмотки ротора. Из электрической схемы замещения ротора при его вращении (рис. 5.14, а) следует, что ток ротора
При вращении ротора [см. (5.13а) и (5.12а)] ЭДС E2s в обмотке ротора и ее частота пропорциональны скольжению s. Следовательно, и индуктивное сопротивление обмотки ротора зависит от скольжения:
где Х2—индуктивное сопротивление обмотки заторможенного ротора.
Подставляя значения E2s и X2s в (5.30), получаем
В числителе и знаменателе (5.32) есть переменная величина s, поэтому преобразуем его к виду
Уравнению (5.32а) соответствует электрическая схема замещения, показанная на рис. 5.14, б. Здесь ЭДС Е2 и индуктивное сопротивление Х2 неизменны, а активное сопротивление R2/s изменяется в зависимости от скольжения.
Схемы, представленные на рис. 5.14, а, б, с энергетической точки зрения не эквивалентны. Так, в схеме, приведенной на рис. 5.14, а, электрическая мощность ротора Рр равна электрическим потерям
|
Рис. 5.14. Схемы замещения ротора асинхронной машины |
а мощность, потребляемая в схеме, приведённой на рис. 5.14, б,
Отношение этих мощностей
Однако поскольку s = ΔPэл2/Pэм, получим, что Р'р = Рэм. Следовательно, электрическая мощность Р'р в схеме, представленной на рис. 5.14, б, равна всей электромагнитной мощности, подводимой от статора к ротору.
По известным значениям ΔРэл2 и Рэм можно определить и механическую мощность ротора:
Полученный результат наглядно представлен электрической схемой (рис. 5.14, в), в которой активное сопротивление обмотки ротора состоит из двух частей: R2 и R2(1—s)/s. Первое сопротивление не зависит от режима работы, и потери в нем равны электрическим потерям реального ротора. Второе сопротивление зависит от скольжения, и мощность, выделяющаяся в нем, численно равна механической мощности двигателя. Таким образом, рассматриваемая схема замещения позволяет заменить реальный вращающийся ротор неподвижным, в цепь обмотки которого включено активное сопротивление, зависящее от частоты вращения ротора.
Т-образная схема замещения. Полная схема замещения асинхронной машины при вращающемся роторе отличается от схемы замещения асинхронной машины с заторможенным ротором Рис. 5.15. Т-образная схема замещения (а) асинхронной машины
и ее векторная диаграмма (б)
только наличием в цепи ротора активного сопротивления, зависящего от нагрузки (рис. 5.15, а). Эту схему замещения называют Т-образной. Следовательно, и в этом случае удается свести теорию асинхронной машины к теории трансформатора. Векторная диаграмма для Т-образной схемы замещения приведена на рис. 5.15, б.
Сопротивления Rm и Хт намагничивающего контура значительно меньше соответствующих значений для схемы замещения трансформатора, так как ток холостого хода асинхронного двигателя гораздо больше, чем у трансформатора. Если при рассмотрении работы трансформатора часто можно пренебречь намагничивающим контуром, то при рассмотрении работы асинхронного двигателя этого сделать нельзя, так как ошибка может получиться значительной.
Г-образная схема замещения. Можно упростить вычисления, преобразовав Т-образную схему замещения в Г-образную, как это показано на рис. 5.16, а. Подобные преобразования изучаются в курсе ТОЭ, поэтому математические выкладки здесь не приводятся.
Для
Г-образной схемы замещения (рис. 5.16, а)
имеем
,
где
и
—
токи
рабочих контуров
для Т- и Г-образной схем замещения.
Появившийся
в этой схеме замещения комплекс
практически
всегда можно заменить модулем
С1
который
для асинхронных двигателей мощностью
10 кВт и выше равен 1,02...1,05. При анализе
электромагнитных
процессов в машинах общего применения
часто
полагают С1≈1,
что существенно облегчает расчеты и
мало влияет на точность полученных
результатов. Г-образную
схему замещения при С1
= 1
называют
упрощенной
схемой
замещения с вынесенным намагничивающим
контуром (рис.
5.16, б).
В
этой схеме ток
без
большой погрешности можно
приравнять току I0.
Рис. 5.16. Г-образные схемы замещения асинхронной машины (а, б)