Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Вопросы по биологии.doc
Скачиваний:
23
Добавлен:
01.11.2018
Размер:
352.26 Кб
Скачать

12.Роль белка в клетке и живых организмах.

Ферментативная. Важнейшая функция белка. Фермент - это катализатор биохимической реакции. Он ускоряет протекание реакции в клетке в сотни и тысячи раз, сам при этом не участвует в реакции. Важно запомнить две особенности всех биохимических реакций, протекающих в клетке: 1. все эти реакции протекают только в присутствии ферментов; 2. все ферменты клетки – это белки.

Ферменты обладают следующими свойствами: а) каждый фермент может ускорять только один тип биохимической реакции, б) каждый фермент работает в строго определенных температурных и кислотных условиях.

Строительная. Все мембранные структуры клетки содержат в своем составе белки. Нередко трудно разграничить строительную и ферментативную функции белка, так как, многие белки мембран являются ферментами.

Транспортная. Некоторые белки способны осуществлять перенос различных молекул или элементарных частиц. Например, белки-цитохромы отвечают за перенос электронов; гемоглобин – за перенос кислорода и углекислого газа.

Защитная. В крови животных находятся специальные белки, способные нейтрализовать возбудителей болезней, склеиваться с чужеродными и вредными веществами. Такие белки называются антителами .

Гормональная. Некоторые белки играют роль гормонов. Например, гормон поджелудочной железы инсулин, регулирующий содержание сахара в крови.

Энергетическая. Все белки в клетке рано или поздно расщепляются до конечных продуктов распада: углекислого газа, воды, аммиака, сероводорода и солей. В результате такого расщепления выделяется энергия, часть которой запасается в виде молекул АТФ.

Запасающая. Некоторые белки способны отслаиваться в запас.

13.Строение молекулы атф, значение.

В клетках всех организмов имеются молекулы АТФ - аденозинтрифосфорной кислоты. АТФ - универсальное вещество клетки, молекула которого имеет богатые энергией связи. Молекула АТФ - это один своеобразный нуклеотид, который, как и другие нуклеотиды, состоит из трех компонентов: азотистого основания - аденина, углевода - рибозы, но вместо одного содержит три остатка молекул фосфорной кислоты (рис. 13). Связи, обозначенные на рисунке значком ~, богаты энергией и называются макроэргическими. Каждая молекула АТФ содержит две макроэргические связи.

При разрыве макроэргической связи и отщеплении с помощью ферментов одной молекулы фосфорной кислоты освобождается 40 кДж/моль энергии, а АТФ при этом превращается в АДФ - аденозиндифосфорную кислоту. При отщеплении еще одной молекулы фосфорной кислоты освобождается еще 40 кДж/моль; образуется АМФ - аденозинмонофосфорная кислота. Эти реакции обратимы, то есть АМФ может превращаться в АДФ, АДФ - в АТФ (рис. 14).

Молекулы АТФ не только расщепляются, но и синтезируются, поэтому их содержание в клетке относительно постоянно. Значение АТФ в жизни клетки огромно. Эти молекулы играют ведущую роль в энергетическом обмене, необходимом для обеспечения жизнедеятельности клетки и организма в целом.

АТФ обеспечивает протекание многих реакций синтеза органических соединений, отдавая часть своей энергии с одним фосфатом. При этом сама молекула АТФ превращается в молекулу АДФ (аденозиндифосфат). В свою очередь АДФ может отдать еще один фосфат (а, следовательно, и энергию) для другой реакции, превратившись теперь в молекулу АМФ (аденозинмонофосфат). В химической связи двух фосфатов с аденозином заключается большая энергия, поэтому такие связи принято называть макроэргическими . Уникальность молекул носителей энергии заключается не только в их способности отдавать энергию, но и запасать энергию выделяющуюся в самых разнообразных реакциях. Не трудно понять, что процесс накопления энергии идет в направлении постепенного присоединения фосфатов к аденозину: АМФ + фосфат ® АДФ, АДФ + фосфат ® АТФ. Эти реакции присоединения фосфатов называются реакциями фосфорилирования . В зависимости от источника энергии для этих реакций фосфорилирование бывает следующих типов:

Циклическое фосфорилирование : запасается энергия электрона, возбужденного светом (при фотосинтезе).

Гликолитическое фосфорилирование : запасается энергия бескислородного расщепления молекулы глюкозы (при гликолизе).

Окислительное фосфорилирование: запасается энергия окисления кислородом молекул молочной кислоты (при дыхании).