Добавил:
darya.povchinick@yandex.ru Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ZANYaTIE_27_OBMEN_ENERGII_TERMOREGULYaTsIYa.doc
Скачиваний:
65
Добавлен:
31.10.2018
Размер:
4.1 Mб
Скачать

Занятие 27. Обмен энергии. Терморегуляция энергетический обмен

Все процессы, происходящие в организме, можно разбить на 3 группы: пластические, энергетические, информационные.

Использование химической энергии в организме называют энергетическим обменом.

В процессе обмена веществ постоянно происходит превращение энергии: потенциальная энергия сложных органических соединений, поступивших с пищей, превращается в тепловую, механическую и электрическую.

За счет освобождающейся в организме энергии поддерживается определенная постоянная температура тела и совершается внешняя работа. Наибольшее количество энергии в организме расходуется на процесс движения, а также сердечную деятельность дыхание, перистальтику кишечника и др.

Часть заключенной в питательных веществах химической энергии преобразуется в другие биологически полезные формы - электрическую, осмотическую, механическую. Основная часть энергии выделяется в виде тепла.

В основе процессов обмена энергии лежат законы термодинамики - взаимных превращений различных видов энергии при переходах ее от одних тел к другим в форме теплоты или работы. С точки зрения термодинамики живые организмы относятся к открытым стационарным неравновесным системам. Это означает, что во-первых, они обмениваются с окружающей средой веществом и энергией.

Определение энергозатрат организма.

Вся энергия, выделяемая при распаде питательных веществ до конечных продуктов зависит только от состояния исходного вещества и конечных продуктов и не зависит от того, через какие промежуточные стадии или пути обмена идет их распад.

Когда физическая работа не совершается, вся химическая энергия переходит в тепло, что дает возможность использовать теплопродукцию в качестве показателя интенсивности энергетического обмена.

Количество тепла, выделяемого или поглощаемого в ходе различных физических и химических процессов, рассчитывают методами прямой и непрямой калориметрии.

В физиологии и медицине калориметрия используется для изучения тепловых эффектов в покое, при различных видах деятельности и при заболеваниях.

Прямая калориметрия.

Прямая калориметрия основана на непосредственном и полном учете количества выделенного организмом тепла. Измерения проводят в специальных камерах — биокалориметрах, хорошо герметизированных и теплоизолированных от окружающей среды. Для расчета количества выделенного тепла учитывают разность температур поступающей в камеру и оттекающей от нее воды.

Непрямая калориметрия.

Для расчета энергообразования у человека применяют метод непрямой калориметрии. Метод основан на определении количества потребленного кислорода и выделенной двуокиси углерода за определенный отрезок времени (полный газовый анализ) или в условиях относительного покоя — только количества поглощенного кислорода (неполный газовый анализ) с последующим расчетом теплопродукции.

Полный газовый анализ.

В настоящее время полный газовый анализ проводят открытым респираторным методом Дуглас а—Xолдейна. Метод основан на сборе выдыхаемого воздуха в специальный приемник (воздухонепроницаемый мешок) с последующим определением общего его количества и содержания в нем кислорода и двуокиси углерода при помощи газоанализаторов.

Схема определения энергетических затрат.

1. Зная содержание газов в атмосферном воздухе, можно вычислить, насколько уменьшилось содержание кислорода и насколько увеличилось содержание двуокиси углерода в выдыхаемом воздухе, а затем на основании этих данных определить дыхательный коэффициент.

Дыхательный коэффициент. Отношение объема выделенной двуокиси углерода к объему поглощенного кислорода называется дыхательным коэффициентом.

ДК = С02 (л) / 02 (л)

Для углеводов:ДК =1 Для жиров: ДК = 0,7 Для белков: ДК = 0,80

При смешанной пище дыхательный коэффициент составляет 0,8 - 0,9.

2. Определенному дыхательному коэффициенту соответствует определенный калорический эквивалент кислорода, т.е. количество тепла, которое освобождается при полном окислении 1 г питательного вещества (до конечных продуктов) в присутствии 1 л кислорода.

3. Найденный калорический эквивалент кислорода умножают на количество потребленного кислорода и находят количество энергии необходимое для выполнения определенного вида деятельности.