
- •Системы электросвязи. Одноканальные и многоканальные системы. Структурные схемы. Назначение функциональных узлов. Виды информации и сообщений. Сигнал (определение). Система электросвязи
- •Информация, сообщение, электрический сигнал
- •Классификация сигналов по информативности, форме и характеру изменения сигнального параметра. Классификация сигналов электросвязи
- •Физические характеристики сигналов. Физические характеристики канала связи. Условия согласования канала и сигнала. Характеристики сигналов электросвязи
- •Характеристики каналов связи
- •Основные способы представления сигналов. Математическая модель, векторная и временные диаграммы. Пояснить на примерах. Математическая модель сигнала
- •Временная диаграмма сигнала
- •Векторная диаграмма сигнала
- •Основные способы представления сигналов. Спектральные диаграммы. Виды спектров. Спектральная диаграмма сигнала
- •Виды спектров
- •Использование ряда Фурье для анализа спектров периодических негармонических сигналов на примере периодической последовательности прямоугольных импульсов. Ряд Фурье
- •Спектр периодической последовательности прямоугольных импульсов. Зависимость спектра от периода следования импульсов и их длительности. Ширина спектра. Разложение в ряд Фурье пппи
- •Использование преобразования Фурье для анализа спектра непериодических сигналов. Спектр одиночного прямоугольного импульса. Интегральные преобразования Фурье
- •Определение спектра опи
- •Сравнение спектров периодической последовательности прямоугольных импульсов.
- •Нелинейные элементы (нэ). Свойства нелинейных элементов. Способы аппроксимации характеристик нэ. Исходные понятия и определения
- •Классификация нэ
- •Общие понятия
- •Полиномиальная аппроксимация
- •Аналитический метод анализа спектра отклика нелинейной цепи на гармоническое воздействие. Спектральный состав отклика при аппроксимации степенным полиномом. Методы спектрального анализа
- •Слабонелинейный режим работы нэ
- •Анализ спектра отклика нелинейной цепи на бигармоническое воздействие. Комбинационные частоты. Бигармоническое воздействие
- •Амплитудная модуляция
- •Сигнал с аналоговой двухполосной амплитудной модуляцией с большим уровнем несущей. Математическая модель. Спектр сигнала при модуляции гармоническим и сложным сигналами. Спектр ам сигнала
- •Сигнал с аналоговой частотной модуляцией гармонической несущей. Временная диаграмма и математическая модель сигнала. Девиация частоты и индекс частотной модуляции. Угловая модуляция
- •Частотная модуляция
- •Сигнал с аналоговой частотной модуляцией гармонической несущей. Математическая модель сигнала. Спектр сигнала при различных индексах частотной модуляции. Ширина спектра. Гармоническая чм
- •Гармоническая фм
- •Двоичная аМн
- •Двоичная чМн
- •Дискретизация непрерывных сигналов по времени. Теорема в. А. Котельникова (определение, временные диаграммы). База сигнала. Теорема Котельникова
- •Восстановление дискретных по времени сигналов. Ряд в. А Котельникова (пояснить временными диаграммами). Преимущества передачи дискретных сообщений. Содержание теоремы Котельникова
- •Повторная (двойная) модуляция. Необходимость, примеры временных диаграмм (модулирующий сигнал, две несущие и два модулированных сигнала). Повторная модуляция
- •Этапы цифровой модуляции. Дискретизация непрерывных сигналов по времени и по уровню. Шкала квантования, шум квантования. Равномерное и неравномерное квантование. Аналого-цифровое преобразование
- •Каналы электросвязи. Классификация каналов.
- •Классификация каналов связи
- •Характеристики каналов связи
- •Каналы электросвязи. Математические модели каналов электросвязи.
- •Помехи и искажения в каналах электросвязи. Классификация помех и искажений. Отличие помех от искажений.
- •Искажения в канале
- •Помехи в канале
- •Информационные характеристики источников дискретных сообщений. Энтропия. Свойства энтропии. Производительность и избыточность источника. Количественная мера информации
- •Информационные характеристики источника дискретных сообщений
- •Пропускная способность канала
- •Основная теорема Шеннона
- •Процесс возбуждения колебаний в аг
- •Энергетическое равновесие в аг
- •Условие баланса амплитуд
- •Условие баланса фаз
- •Мягкий и жесткий режимы возбуждения генератора. Достоинства и недостатки мягкого и жесткого режимов возбуждения. Область применения lc-автогенераторов. Режим мягкого самовозбуждения аг
- •Режим жесткого самовозбуждения
- •Цепочечные rc-автогенераторы с фазосдвигающей цепью. Структурная электрическая схема. Принцип работы и виды фазосдвигающей цепи. Условия самовозбуждения цепочечного rc-автогенератора.
- •Цепочный rc-автогенератор
- •Однотактные модуляторы
- •15.1 Методы формирования ом сигнала
- •Формирование частотно-модулированных и фазомодулированных сигналов. Прямые и косвенные методы. Структурные схемы модуляторов. Принцип действия.
- •Прямой метод чм
- •Прямой метод фм
- •Косвенный метод чм
- •Косвенный метод фм
- •Дискретная модуляция гармонической несущей. Способы формирования сигналов аМн, чМн, фМн. Электрическая структурная схема ключевого формирователя манипулированных сигналов. Общие сведения
- •Амплитудно-импульсная модуляция
- •Частотно-импульсная модуляция
- •Широтно-импульсная и фазо-импульсная модуляция
- •Однотактный диодный фд
- •Частотно-амплитудные детекторы
- •Детектирование амплитудно-манипулированных сигналов (аМн). Поэлементный приём. Структурная электрическая схема когерентного демодулятора сигнала аМн. Принцип работы.
- •Детектирование фазомодулированных сигналов (фМн). Поэлементный приём. Структурная электрическая схема когерентного демодулятора сигнала фМн. Принцип работы.
-
Использование ряда Фурье для анализа спектров периодических негармонических сигналов на примере периодической последовательности прямоугольных импульсов. Ряд Фурье
Периодический сигнал любой формы с периодом Т может быть представлен в виде суммы
гармонических
колебаний с разными амплитудами и
начальными фазами, частоты которых
кратны основной частоте
.
Гармонику этой частоты называют основной
или первой, остальные – высшими
гармониками.
Тригонометрическая форма ряда Фурье:
,
где
- постоянная составляющая;
-
амплитуды косинусоидальных составляющих;
-
амплитуды синусоидальных составляющих.
Четный
сигнал ()
имеет только косинусоидальные, а нечетный
(
- только синусоидальные слагаемые.
Более удобной является эквивалентная тригонометрическая форма ряда Фурье:
,
где
- постоянная составляющая;
-
амплитуда n-ой
гармоники сигнала. Совокупность амплитуд
гармонических составляющих носит
название спектра амплитуд;
-
начальная фаза n-ой
гармоники сигнала. Совокупность фаз
гармонических составляющих носит
название спектра фаз.
-
Спектр периодической последовательности прямоугольных импульсов. Зависимость спектра от периода следования импульсов и их длительности. Ширина спектра. Разложение в ряд Фурье пппи
Рассчитаем
амплитудный и фазовый спектры ПППИ,
имеющих амплитуду
,
длительность
,
период следования
и расположенных симметрично относительно
начала координат (сигнал – четная
функция).
Рисунок 5.1 – Временная диаграмма ПППИ.
Сигнал на интервале одного периода можно записать:
Вычисления:
,
,
,
Ряд
Фурье для ПППИ имеет вид:.
Рисунок 5.2 – Амплитудная спектральная диаграмма ПППИ.
Рисунок 5.3 – Фазовая спектральная диаграмма ПППИ.
Выводы:
- спектр ПППИ линейчатый (дискретный) (представляется набором отдельных спектральных линий), гармонический (спектральные линии находятся на одинаковом расстоянии друг от друга ω1), убывающий (амплитуды гармоник убывают с ростом их номера), имеет лепестковую структуру (ширина каждого лепестка равна 2π/τ), неограниченный (интервал частот, в котором располагаются спектральные линии, бесконечен);
- при целочисленных скважностях частотные составляющие с частотами, кратными скважности в спектре отсутствуют (их частоты совпадают с нулями огибающей спектра амплитуд);
- с увеличением скважности амплитуды всех гармонических составляющих уменьшаются. При этом если оно связано с увеличением периода повторения Т, то спектр становится плотнее (ω1 уменьшается), с уменьшением длительности импульса τ – становится больше ширина каждого лепестка;
- за ширину спектра ПППИ принят интервал частот, содержащий 95% энергии сигнала, (равен ширине двух первых лепестков огибающей):
или
;
- все гармоники, находящиеся в одном лепестке огибающей, имеют одинаковые фазы, равные либо 0 либо π.
-
Использование преобразования Фурье для анализа спектра непериодических сигналов. Спектр одиночного прямоугольного импульса. Интегральные преобразования Фурье
Сигналы
связи всегда ограничены во времени и
поэтому не являются периодическими.
Среди непериодических сигналов наибольший
интерес представляют одиночные импульсы
(ОИ). ОИ можно рассматривать как предельный
случай периодической последовательности
импульсов (ППИ) длительностью
при бесконечно большом периоде их
повторения
.
Рисунок 6.1 – ППИ и ОИ.
Непериодический сигнал может быть представлен суммой бесконечно большого числа бесконечно близких по частоте колебаний с исчезающе малыми амплитудами. Спектр ОИ является непрерывным и вводится интегралами Фурье:
-
(1) - прямое преобразование Фурье. Позволяет
аналитически отыскать спектральную
функцию по заданной форме сигнала;
-
(2) - обратное преобразование Фурье.
Позволяет аналитически отыскать форму
по заданной спектральной функции
сигнала.
Комплексная
форма интегрального преобразования
Фурье
(2) дает двустороннее спектральное
представление (имеющее отрицательные
частоты) непериодического сигнала
в виде суммы гармонических колебаний
с бесконечно малыми комплексными
амплитудами
,
частоты которых непрерывно заполняют
всю ось частот.
-
комплексная спектральная плотность
сигнала – комплексная функция частоты,
одновременно несущая информацию как
об амплитуде, так и о фазе элементарных
гармоник.
Модуль
спектральной плотности
называется спектральной плотностью
амплитуд. Его можно рассматривать как
АЧХ сплошного спектра непериодического
сигнала.
Аргумент
спектральной плотности
называется спектральной плотностью
фаз. Его можно рассматривать как ФЧХ
сплошного спектра непериодического
сигнала.
Преобразуем формулу (2):
Тригонометрическая форма интегрального преобразования Фурье дает одностороннее спектральное представление (не имеющее отрицательных частот) непериодического сигнала:
.