- •Глава 2 в начале была рнк
- •Живые системы функционируют в окруженной мембраной контролируемой микросреде
- •Каждую отдельную химическую реакцию осуществляет специфический катализатор
- •В основе механизма наследственности лежит простое правило спаривания оснований
- •Генетическая информация передается от генов (нуклеиновых кислот) к белкам -центральная догма молекулярной биологии
- •Обратная транскрипция — создание днк-копии по матрице рнк
- •Глава 3 иммунная система
- •Насколько велик репертуар антител?
- •Эволюция иммунной системы
- •Структура антител
- •Что происходит при заражении?
- •Необходимость аутотолерантности
- •Реакция на неожиданное
- •Глава 4 клонально-селекционная теория
- •Почему антитела специфичны и как приобретается аутотолерантность
- •Чем гены антител отличаются от других генов: перестройки днк вариабельной области
- •Отступление: можно ли сравнивать иммунную систему с современными компьютерными антивирусными программами?
- •Глава 5 соматические мутации
- •Теория соматических мутаций
- •Тонкая структура вариабельной области -структуры Ву-Кэбота
- •Центр размножения: соматическое гипермутирование перестроенных V(d)j-reHob
- •Подтверждение факта соматического мутирования, вызванного антигеном
- •Как мутации распределены по участку-мишени?
- •Механизм соматического гипермутирования V(d)j-reHob
- •Данные о соматическом мутировании не соответствуют традиционной модели, основанной на днк, но предсказываются rt-моделью
- •Что является сигналом к прекращению соматического мутирования?
- •«Направленные мутации» и наследование соматических мутаций
- •Глава 6 обратная связь сомы и зародышевой линии
- •Наследование соматических мутаций
- •Опыты по передаче с отцовской стороны
- •«Печать» соматических мутаций и отбора стоит на всех V-генах зародышевой линии
- •«Следы интеграции» сомы в зародышевую линию
- •Отступление: Комета Шумейкер Леви 9
- •Эволюционная значимость обратной связи сомы и зародышевой линии
- •Проницаемость барьера Вейсмана
- •Глава 7 за пределами иммунной системы
- •Наследование индуцированных химическими веществами метаболических нарушений
- •Наследование мозолистых утолщений
- •Наследование анатомических особенностей, связанных с привычкой сидеть на корточках
- •Приобретенная наследственность у бактерий
- •Приобретенная наследственность у растений
- •Можно ли распространить нашу гипотезу за пределы иммунной системы?
- •Модель миграции в-лимфоцитов памяти: приложения для генов «домашнего хозяйства»
- •Эпигенетическое наследование
- •Будущие эксперименты
- •Ответ неодарвинистам
- •Видообразование и конвергенция
- •Генная инженерия
- •Эволюция сознания
Теория соматических мутаций
Многоклеточный организм состоит из сотен миллионов клеток, некоторые из них непрерывно и быстро делятся. Например, у человека и других позвоночных все клетки крови обновляются со скоростью десять миллионов в день. Эпителиальные клетки кожи и слизистых (пищеварительного тракта и носоглотки) ежедневно образуют миллионы дочерних клеток, замещающих израсходованные, т. е. те клетки, которые слущиваются с эпителиальных поверхностей. Во внутренних органах (сердце, печени, почках и мозге) скорость замещения клеток низкая. Нейроны (нервные клетки) у взрослого человека не делятся вообще. При делении клетки ДНК в ядре удваивается, образуются копии всех хромосом, которые передаются дочерним клеткам. Если это происходит в большом числе клеток, надо ожидать появления какого-то числа соматических мутаций (несмотря даже на то, что частота мутаций при репликации ДНК низка). Следовательно, у крупных многоклеточных животных соматические мутации будут появляться все время, особенно в тех клеточных популяциях или тканях, где скорость замещения клеток очень высока.
Все виды злокачественных опухолей вызваны соматическими генными мутациями, которые делают клетки невосприимчивыми к сигналам, ограничивающим их рост или вызывающим гибель; такие клетки начинают «жить своей собственной жизнью». Они могут мутировать дальше, становясь локально агрессивными или давая начало метастазам. Наглядный пример последствия соматических мутаций — кожные формы рака. Они возникают из единичной мутантной клетки при ее делении. Клон клеток, подобно колонии плесневых грибов на черством хлебе, растет на ограниченном участке кожи. Наиболее злокачественная форма рака кожи — меланома (пигментированная опухоль). Сейчас известно, что ее образование провоцирует ультрафиолетовое излучение солнца.
Соматические мутации, приводящие к раку, как и мутации, неблагоприятно действующие на функции важных структурных белков и ферментов, несомненно вредны. Мы кратко рассказали о них, чтобы показать контраст с полезными мутациями, которые происходят в генах вариабельных областей антитела, и подчеркнуть исключительность процесса контроля/отбора в мутантных В-лимфоцитах. Теперь повторим наши ключевые вопросы и попытаемся установить возможные биологические механизмы, обеспечивающие эти процессы.
Сейчас известно, что в ходе иммунного ответа в перестроенных V(D)J-генax соматические мутации возникают с высокой частотой. В отобранных антигеном В-клетках частота мутаций V(D)J-генов составляет примерно 1/1000 — 1/10000 оснований на репликационное событие. Это в миллионы раз выше, чем частота мутирования генов, передающихся с половыми клетками. Мутантные V-области антитела появляются через 5—10 дней после воздействия антигена. Считается, что увеличение аффинности (сродства к антигену) антитела основано на соматическом мутировании и отборе в течение иммунного ответа (рис. 3.8). Несмотря на то, что молекулярные механизмы мутационного процесса в соматических клетках иммунной системы активно исследуются во многих лабораториях мира, включая и лабораторию Теда Стила и Боба Бландэна, еще остаются вопросы, требующие объяснения. Может ли биологическая система обеспечивать полезность соматических мутаций (например, удаляя вредные мутации, но сохраняя полезные)? По нашему мнению, ответ на этот вопрос — да, может. Иммунная система выработала два тесно связанных процесса — соматического мутирования и отбора наиболее приспособленных, которые обеспечивают животным потенциальные преимущества.
