
- •Глава 2 в начале была рнк
- •Живые системы функционируют в окруженной мембраной контролируемой микросреде
- •Каждую отдельную химическую реакцию осуществляет специфический катализатор
- •В основе механизма наследственности лежит простое правило спаривания оснований
- •Генетическая информация передается от генов (нуклеиновых кислот) к белкам -центральная догма молекулярной биологии
- •Обратная транскрипция — создание днк-копии по матрице рнк
- •Глава 3 иммунная система
- •Насколько велик репертуар антител?
- •Эволюция иммунной системы
- •Структура антител
- •Что происходит при заражении?
- •Необходимость аутотолерантности
- •Реакция на неожиданное
- •Глава 4 клонально-селекционная теория
- •Почему антитела специфичны и как приобретается аутотолерантность
- •Чем гены антител отличаются от других генов: перестройки днк вариабельной области
- •Отступление: можно ли сравнивать иммунную систему с современными компьютерными антивирусными программами?
- •Глава 5 соматические мутации
- •Теория соматических мутаций
- •Тонкая структура вариабельной области -структуры Ву-Кэбота
- •Центр размножения: соматическое гипермутирование перестроенных V(d)j-reHob
- •Подтверждение факта соматического мутирования, вызванного антигеном
- •Как мутации распределены по участку-мишени?
- •Механизм соматического гипермутирования V(d)j-reHob
- •Данные о соматическом мутировании не соответствуют традиционной модели, основанной на днк, но предсказываются rt-моделью
- •Что является сигналом к прекращению соматического мутирования?
- •«Направленные мутации» и наследование соматических мутаций
- •Глава 6 обратная связь сомы и зародышевой линии
- •Наследование соматических мутаций
- •Опыты по передаче с отцовской стороны
- •«Печать» соматических мутаций и отбора стоит на всех V-генах зародышевой линии
- •«Следы интеграции» сомы в зародышевую линию
- •Отступление: Комета Шумейкер Леви 9
- •Эволюционная значимость обратной связи сомы и зародышевой линии
- •Проницаемость барьера Вейсмана
- •Глава 7 за пределами иммунной системы
- •Наследование индуцированных химическими веществами метаболических нарушений
- •Наследование мозолистых утолщений
- •Наследование анатомических особенностей, связанных с привычкой сидеть на корточках
- •Приобретенная наследственность у бактерий
- •Приобретенная наследственность у растений
- •Можно ли распространить нашу гипотезу за пределы иммунной системы?
- •Модель миграции в-лимфоцитов памяти: приложения для генов «домашнего хозяйства»
- •Эпигенетическое наследование
- •Будущие эксперименты
- •Ответ неодарвинистам
- •Видообразование и конвергенция
- •Генная инженерия
- •Эволюция сознания
Отступление: можно ли сравнивать иммунную систему с современными компьютерными антивирусными программами?
Нам кажется уместной следующая, связанная с компьютерами, аналогия. Одна из множества опасностей, перед лицом которых мы стоим в век Интернета, соединяющего миллионы персональных компьютеров, — это электронные «вирусы» — детище нашей кибернетической культуры. Многие компьютерные вирусы по своему поведению очень похожи на биологические. При заражении жесткого диска они могут уничтожать или портить и файлы, и программы. Если мы нечаянно посылаем зараженное сообщение коллегам и друзьям, то тем самым мы производим новые копии вируса, обеспечивающие его выживание. Сейчас доступны антивирусные пакеты программ, которые автоматически проверяют входящие файлы на наличие известных компьютерных вирусов. А что же абсолютно новые электронные вирусы? Как нам защитить от них свои-компьютеры? Насколько современные антивирусные компьютерные программы сравнимы с биологической стратегией иммунного ответа? Что, если кибернетики были бы в состоянии создать новые электронные вирусы со всеми врожденными эффективными стратегиями нашей собственной иммунной системы? Смогут ли интернетовские или телефонные линии и коммутирующие концентраторы начать страдать от болезней, подобньк СПИДу? Произойдет ли это до того, как программисты создадут антивирусные программы, которые способны эффективно отвечать на неожиданное? Это захватывающие вопросы. IBM в настоящий момент создает «иммунную систему» для борьбы с вирусами в киберпространстве [8]. Антивирусные программы живут в хозяине-компьютере и контролируют системные функции, изменения в программах или семействах сигнатур для того, чтобы распознавать и уничтожать вирусы. У компьютерной иммунной системы, создаваемой IBM, любой набор данных, подозреваемых на зараженность, автоматически посылается в аппарат вирусного анализа. Программа, действующая как подсадная утка, «соблазняет» вирус заразить ее, так что код вируса выявляется для дальнейшего анализа. Затем аппарат вирусного анализа обновляет свои файлы прежде, чем посылать эту новую информацию назад в инфицированную машину и в любой другой потенциально инфицированный узел в сети (иммунный ответ). Таким образом, новые антивирусные программные технологии основаны на элементарных моделях иммунной системы позвоночных. «Эволюция» уже действует на компьютерном поле боя. Дальнейшее развитие антивирусных технологий, возможно, будет изменяться параллельно знаниям о биологической эволюции.
В этой главе было описано много примеров эффективности и логики иммунной системы, которые, возможно, помогут тем, кто интересуется «биологическим» дизайном компьютерных программ, обнаружить некоторые фундаментальные принципы. Анализ того, почему самолеты не похожи на птиц, дает нам важные уроки. Птицы имеют более высоко развитые факторы стабильности и маневренности, чем самолеты, однако, самолеты летают быстрее. Создания природы, как правило, оказываются более гибкими и легкими, нежели сконструированные людьми аппараты. Веками природа служила источником вдохновения для разработчиков новых технологий. Однако нам еще далеко до уровня эффективности системы приобретенного иммунитета. Как заметил Ричард Фейнман (Feynman), говоря об эффективности природы в квантовом масштабе и размышляя о том, может ли эффективно обрабатываться информация на этом уровне: «Внизу еще много места...».
В физике твердого тела и ядерной физике ученые только сейчас открывают детали некоторых законов природы, описывающих поведение субатомных частиц. Со временем откроется возможность создать нанокомпьютерную технологию (порядка 10-9 метра, или 10-3 микрона). Вполне вероятно, создание компьютерной технологии, действующей с той же эффективностью, что и живая клетка, со всем набором врожденных разумных функций, размещенных и внутренне управляемых на площади примерно в 5—10 микрон (приблизительный диаметр клеточного ядра равен 10-5 метра). В ближайшем будущем, используя современные промышленные технологии, достижения ультрафиолетовых лазеров, роботов и линз, необходимых для гравировки микросхем на силиконовых чипах, люди могли бы породить новое поколение микропроцессоров с размерами не больше 0,13 микрон в поперечнике. Правда, есть ряд технических и физических преград, которые пока делают дальнейшую миниатюризацию невозможной. Возможно также, что программисты смогут имитировать некоторые природные стратегии обработки информации для повышения эффективности своих программ. Конечно, наше схематичное сравнение иммунной системы с современными сканирующими антивирусными программами далеко от реальности. Когда мы сравниваем стратегии антивирусных программ со стратегиями нашей иммунной системы, оказывается, что компьютерщикам надо еще многому научиться. Информационным технологиям придется сделать существенный скачок для того, чтобы достичь совершенства иммунной системы позвоночных, приобретенного ею за время эволюции.