Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
vms_answers_for_1-50 !!!!!!!!.doc
Скачиваний:
67
Добавлен:
29.10.2018
Размер:
1.81 Mб
Скачать

13. Определить логарифмически-нормальное распределение с.В и его параметры. Привести пример использования этой модели в сфере телекоммуникаций.

В системах связи затухание сигнала при прохождении его по тракту выражается как

,

где и - мощности выходного и входного сигналов. Из экспериментов известно, что затухание А очень часто ведет себя как гауссовская случайная величина. Отсюда возникает задача определения плотности вероятностей отношения мощностей. Для решения этой задачи введем две случайные величины X и Y , связанные соотношением X=eY , считая, что Y представляет собой гауссовскую случайную величину с математическим ожиданием и дисперсией . Можно показать , что плотность распределения вероятностей для Х имеет вид

Это и есть логарифмически нормальная плотность распределения вероятностей.

Математическое ожидание и дисперсия соответственно равны

16. Проанализировать зависимость закона Пуассона и биномиального закона распределения с. В. Показать использование этой зависимости на практике.

Говорят, что случайная величина Х имеет распределение Пуассона, если её возможные значения: 0,1,2,…m (бесконечное, но счетное множество значений), а соответствующие вероятности выражаются формулой: (2)

Распределение Пуассона (2) зависит от одного параметра а, который является одновременно математическим ожиданием и дисперсией свободной величины Х : ; ; .

Рассмотрим случайную величину Х – число появлений события А в n испытаниях. Она принимает значения 0,1,2…,к,…n. Но как известно, вероятность того, что событие А появится К раз в n испытаниях вычисляется по формуле Бернулли:

(1)

Говорят, что с.в.Х имеет биномиальное распределение, если ее возможные значения равны 0,1,2…,к, …n, а соответствующие вероятности определяются по формуле (1). . Это название связано с тем, что равно коэффициенту при в разложении бинома

Математическое ожидание числа появления события А в n независимых испытаниях равно произведению числа испытаний на вероятность появления события в каждом испытании:

Очевидно, что общее число Х появлений события А в n испытаниях складывается из числа появления события А в отдельных испытаниях. Поэтому если Х1 число появлений события А в 1-м испытании, Х2 число появлений события А во 2-ом, Хn – в n-ом, то общее число появлений события А в n опытах будет равно:

Тогда , где

- математическое ожидание числа появления события А в i – ом опыте. Определим его

Математическое ожидание числа появлений события в одном испытании равно вероятности этого события. Тогда

.

Дисперсия биномиального распределения с параметрами и равна произведению . .

Доказательство. По формуле дисперсии ;

Поскольку Х1, Х2,…Хn независимы, то можно записать.

Определим

;

; с вероятностью и :

; ;

18. Привести классификацию случайных явлений. Определить понятие случайного событие и дать определение пространства случайных событий.

События можно разделить на: достоверные, случайные и невозможные.

Случайным событием называется такое событие, которое при выполнении комплекса условий может произойти, а может и нет. Будем его обозначать буквами А, В, С и т.д.

Примеры. Выпадение "герба" при бросании монеты; появление на выходе приемника помехи в некотором интервале времени его работы; подавление радиоимпульса помехой.

Полной группой событий называются несколько событий таких что в результате опыта непременно должно произойти хотя бы одно из них.

События называют несовместными, если появление одного из них исключает появления других событий в одном и том же испытании.

События называют равновозможными, если есть основания считать, что ни одно из них не является более возможным, чем другое.

Множество всех элементарных событий, имеющих место в результате случайного эксперимента, будем называть пространством элементарных событий W (элементарное событие соответствует элементарному исходу).

Случайными событиями (событиями), будем называть подмножества пространства элементарных событий W .

Пример 1. Подбросим монету один раз. Монета может упасть цифрой вверх - элементарное событие w1, или гербом - элементарное событие w2. Соответствующее пространство элементарных событий W состоит из двух элементарных событий:

W = {w 1,w 2}.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]