
- •1. Понятие идеальной жидкости. Уравнение неразрывности струи и следствие этого уравнении. Объёмная скорость течения жидкости, единицы её измерения.
- •2. Мембранный потенциал клеток. Биологические потенциалы тканей и органов. Физические основы электрокардиографии и вектор электрографии (экг и вэкг).
- •3. Спонтанный, индуцированный переход атомов. Закон Больцмана. Инверсное состояние, (лазер)
- •1. Течение реальной жидкости, формула Пуазейля и Гагена-Пуазейля. Гидравлическое сопротивление. Вычисление гидравлического сопротивления трубы переменного сечения и системы разветвленных труб.
- •3, Устройство и принцип действия оптического квантового генератора.
- •1. Физические основы рефрактометрии. Рефрактометр, назначение и принцип действия. Его применение для определения концентрации раствора
- •2. Рентген (Устройство и принцип действия рентгеновской трубки. Тормозное рентгеновское излучение, механизм его возникновения. Спектр тормозного рентгеновского излучения.
- •1. Звук. Объективные характеристики звука. Интенсивность звука. Абсолютная и относительная шкалы единиц измерения интенсивности звука. Классификация звуков.
- •2. Импульсный ток
- •3. Излучение и поглощение света атомами. Сериальные формулы. Спонтанное и индуцированное излучение атомов.
- •1. Измерение коэффициента вязкости жидкости методом вискозиметра. Рабочая формула
- •2. Переменное высокочастотное магнитное поле.
- •3. Строение атома. Модель Резерфорда. Постулаты Бора.
- •1. Ламинарное и турбулентное течения жидкости. Их внешние признаки. Число Рейнольдса.
- •2. Оценка теплового эффекта при воздействии высокочастотным электрическим током. Процедуры, использующие воздействие высокочастотным электрическим током.
- •3. Излучение и поглощение света атомами. Сериальные формулы. Спонтанное и индуцированное излучение атомов.
- •1. Субъективные характеристики восприятия звука, их связь с объективными характеристиками звука.
- •2. Блок-схема электронного диагностического прибора. Термодатчик, устройство и принцип действия. Чувствительность термодатчика.
- •3. Спектроскоп. Оптическая схема и принцип действия спектроскопа.
- •1, Закон Вебера-Фехнера. Громкость звуков, единицы измерения громкости.
- •2. Блок-схема электронного диагностического прибора. Назначение и основные характеристики усилителя. Виды искажений. Коэффициент усиления усилителя, его зависимость от параметров схемы.
- •3. Коэффициент пропускания и оптическая плотность растворов, их зависимость от концентрации.
- •1. Аудиометрия, Зависимость порога слышимости от частоты звука. Аудиограмма.
- •2. Диатермия. Сущность процедуры, воздействующий фактор, способ его получения. Оценка теплового эффекта.
- •3. Закон Бугера-Ламберта-Бера. Монохроматический показатель поглощения. График зависимости интенсивности света от концентрации.
- •1. Физические основы рефрактометрии (законы» преломление и т.Д.). Рефрактометр, назначение и принцип действия. Его применение для определения
- •2. Самописец (Регистрирующие устройства, их назначеие. Чувствительность регистрирующего устройства, его частотная характеристика.
- •1. Нуклоны. Ядерные силы, их свойства.
- •2. Блок-схема электронного диагностического прибора. Самописец
- •3. Свет, волновая природа. Свойства. Строение: ( Корпускулярно-волновой дуализм света. Квантовая природа света. Фотоны.
- •1. Диагностические приборы. Элт ( Электронно-лучевая трубка. Устройство элт, назначение электродов. Электронно-лучевая трубка. Принцип получения изображения. Чувствительность элт,)
- •2. Рентгеновское излучение. Физическая природа. Тормозное излучение, ( Тормозное рентгеновское излучение, механизм его возникновения. Спектр тормозного рентгеновского излучения
- •2. Блок-схема электронного диагностического прибора. Назначение и основные характеристики усилителя. Виды искажений. Коэффициент усиления усилителя, его
- •3. Энергия связи нуклонов в ядре. Выделение внутриядерной энергии при превращении
- •1. Явление оптической активности. Оптически активные вещества, зависимость угла поворота от концентрации раствора. Зависимость угла поворота плоскости поляризации длины волны. Закон Био.
- •3. Радиоактивность. Виды радиоактивных распадов
- •1. Особенности прохождения света через систему поляризатор-анализатор. Закон
- •2. Электронно-лучевая трубка. Устройство элт, назначение электродов.
- •3. Радиоактивность. Виды радиоактивных распадов.
- •1. Явление оптической активности. Оптически активные вещества, зависимость угла поворота от концентрации раствора. Зависимость угла поворота плоскости поляризации от длины волны. Закон Био.
- •2. Гальванизация и электрофорез. Сущность процедур, воздействующий фактор, арат для гальванизации и электрофореза.
- •3 Радиоактивность; Виды радиоактивных распадов. Радиоактивные излучения. Их виды.
- •1. Физическне основы рефрактометрии. Рефрактометр, назначение и принцип действия, его применение для определения концентрации раствора
- •2. Блок-схема электронного диагностического прибора. Самописец.
- •1. Микроскоп, оптическая схема. Ход лучей в микроскопе. Основные характеристики микроскопа.
- •3. Физические основы биологического действия ионизирующих излучений.
- •Дифракция, интерференция
- •Поглощение ультразвуковых волн
- •2. Переменный электрический ток. Синусоидальный ток. Основные характеристики переменного тока: мгновенное, амплитудное и эффективное значения силы тока, период, линейная и круговая частоты, фаза.
- •3. Физические основы биологического действия ионизирующих излучений.
- •1. Кровь, как неньютоновская жидкость. Особенности течения крови в системе кровообращения, пульсовые волны.
- •1. Физические основы акустических методов диагностики в медицинской практике: аускультация и перкуссия.
- •2. Физические основы измерения артериального давления методом Короткова.
- •1 .Звук. Объективные характеристики звука. Интенсивность звука. Абсолютная и
- •1. Воздействие узи на биологические ткани. Применение ( узи ) в терапии и хирургии.
- •2. Рентгенография
- •3. Переменный электрический ток. Синусоидальный ток. Основные характеристики переменного тока: мгновенное, амплитудное и эффективное значения силы тока, период, линейная и круговая частоты, фаза.
- •1. Физические основы измерения артериального давления
- •2. Импедансометрия.
- •3. Рентгенодиагностика.
- •2. Физические основы акустических методов диагностики в медицинской практике аускультация и перкуссия.
- •3. Гидродинамическое сопротивление в разветвленных системах.
- •1. Явление оптической активности. Оптически активные вещества, зависимость угла поворота от концентрации раствора. Зависимость угла поворота плоскости поляризации от длины волны. Закон Био.
- •2. Электрический ток.
- •3. Гальванизация и электрофорез. Сущность процедур, воздействующий фактор. Аппарат для гальванизации и электрофореза.
3. Физические основы биологического действия ионизирующих излучений.
количественная оценка воздействия ионизирующих излучений. Поглощенная доза, мощность поглощенной дозы, единицы их измерения.
Ионизирующим излучением называют потоки частиц и электромагнитных квантов, взаимодействие которых со средой приводит к ионизации ее атомов и молекул. Ионизирующим излучением являются рентгеновское и у-излуче-ние, потоки а-частиц, • электронов, позитронов, протонов, нейтронов.
В разделе описываются как источники ионизирующего излучения (рентгеновские трубки, радионуклиды*, ускорители), так и физические вопросы применения этого излучения для медицинских целей.
Медикам и биологам несомненно интересны и такие во/1росы, как взаимодействие ионизирующего излучения с веществом и элементы дозиметрии ионизирующего излучения.
В раздел включены также элементарные частицы и космические лучи. Элементарные частицы кроме своего общетеоретического значения интересны читателю потому, что они все больше включаются в арсенал медицинских методик. Космические лучи являются фактором внешней среды, оказывающим влияние не только на организмы, находящиеся в космическом пространстве, но и на жизнь в условиях Земли.
БИЛЕТ 21
1. УЗ излучение ( Ультразвуковые волны. Особенности ультразвуковых волн по сравнению с волнами звуковых частот. Закон поглощения ультразвукового излучения ( УЗИ). Акустический импеданс. Отражение ультразвука. Явление кавитации. Воздействие УЗИ на биологические ткани. Применение (УЗИ) в терапии и хирургии. Физические основы применения УЗИ в диагностике (теневой метод и метод бирэхолокации))
Распространение ультразвука
Распространение ультразвука — это процесс перемещения в пространстве и во времени возмущений, имеющих место в звуковой волне.
Звуковая волна распространяется в веществе, находящемся в газообразном, жидком или твёрдом состоянии, в том же направлении, в котором происходит смещение частиц этого вещества, то есть она вызывает деформацию среды. Деформация заключается в том, что происходит последовательное разряжение и сжатие определённых объёмов среды, причём расстояние между двумя соседними областями соответствует длине ультразвуковой волны. Чем больше удельное акустическое сопротивление среды, тем больше степень сжатия и разряжения среды при данной амплитуде колебаний.
Частицы среды, участвующие в передаче энергии волны, колеблются около положения своего равновесия. Скорость, с которой частицы колеблются около среднего положения равновесия называется колебательной скоростью. Колебательная скорость частиц изменяется согласно уравнению: V = U sin (2pift + G), где V — величина колебательной скорости; U — амплитуда колебательной скорости; f — частота ультразвука; t — время; G — разность фаз между колебательной скоростью частиц и переменным акустическим давлением. Амплитуда колебательной скорости характеризует максимальную скорость, с которой частицы среды движутся в процессе колебаний, и определяется частотой колебаний и амплитудой смещения fA,частиц среды. U = 2