
- •1. Понятие идеальной жидкости. Уравнение неразрывности струи и следствие этого уравнении. Объёмная скорость течения жидкости, единицы её измерения.
- •2. Мембранный потенциал клеток. Биологические потенциалы тканей и органов. Физические основы электрокардиографии и вектор электрографии (экг и вэкг).
- •3. Спонтанный, индуцированный переход атомов. Закон Больцмана. Инверсное состояние, (лазер)
- •1. Течение реальной жидкости, формула Пуазейля и Гагена-Пуазейля. Гидравлическое сопротивление. Вычисление гидравлического сопротивления трубы переменного сечения и системы разветвленных труб.
- •3, Устройство и принцип действия оптического квантового генератора.
- •1. Физические основы рефрактометрии. Рефрактометр, назначение и принцип действия. Его применение для определения концентрации раствора
- •2. Рентген (Устройство и принцип действия рентгеновской трубки. Тормозное рентгеновское излучение, механизм его возникновения. Спектр тормозного рентгеновского излучения.
- •1. Звук. Объективные характеристики звука. Интенсивность звука. Абсолютная и относительная шкалы единиц измерения интенсивности звука. Классификация звуков.
- •2. Импульсный ток
- •3. Излучение и поглощение света атомами. Сериальные формулы. Спонтанное и индуцированное излучение атомов.
- •1. Измерение коэффициента вязкости жидкости методом вискозиметра. Рабочая формула
- •2. Переменное высокочастотное магнитное поле.
- •3. Строение атома. Модель Резерфорда. Постулаты Бора.
- •1. Ламинарное и турбулентное течения жидкости. Их внешние признаки. Число Рейнольдса.
- •2. Оценка теплового эффекта при воздействии высокочастотным электрическим током. Процедуры, использующие воздействие высокочастотным электрическим током.
- •3. Излучение и поглощение света атомами. Сериальные формулы. Спонтанное и индуцированное излучение атомов.
- •1. Субъективные характеристики восприятия звука, их связь с объективными характеристиками звука.
- •2. Блок-схема электронного диагностического прибора. Термодатчик, устройство и принцип действия. Чувствительность термодатчика.
- •3. Спектроскоп. Оптическая схема и принцип действия спектроскопа.
- •1, Закон Вебера-Фехнера. Громкость звуков, единицы измерения громкости.
- •2. Блок-схема электронного диагностического прибора. Назначение и основные характеристики усилителя. Виды искажений. Коэффициент усиления усилителя, его зависимость от параметров схемы.
- •3. Коэффициент пропускания и оптическая плотность растворов, их зависимость от концентрации.
- •1. Аудиометрия, Зависимость порога слышимости от частоты звука. Аудиограмма.
- •2. Диатермия. Сущность процедуры, воздействующий фактор, способ его получения. Оценка теплового эффекта.
- •3. Закон Бугера-Ламберта-Бера. Монохроматический показатель поглощения. График зависимости интенсивности света от концентрации.
- •1. Физические основы рефрактометрии (законы» преломление и т.Д.). Рефрактометр, назначение и принцип действия. Его применение для определения
- •2. Самописец (Регистрирующие устройства, их назначеие. Чувствительность регистрирующего устройства, его частотная характеристика.
- •1. Нуклоны. Ядерные силы, их свойства.
- •2. Блок-схема электронного диагностического прибора. Самописец
- •3. Свет, волновая природа. Свойства. Строение: ( Корпускулярно-волновой дуализм света. Квантовая природа света. Фотоны.
- •1. Диагностические приборы. Элт ( Электронно-лучевая трубка. Устройство элт, назначение электродов. Электронно-лучевая трубка. Принцип получения изображения. Чувствительность элт,)
- •2. Рентгеновское излучение. Физическая природа. Тормозное излучение, ( Тормозное рентгеновское излучение, механизм его возникновения. Спектр тормозного рентгеновского излучения
- •2. Блок-схема электронного диагностического прибора. Назначение и основные характеристики усилителя. Виды искажений. Коэффициент усиления усилителя, его
- •3. Энергия связи нуклонов в ядре. Выделение внутриядерной энергии при превращении
- •1. Явление оптической активности. Оптически активные вещества, зависимость угла поворота от концентрации раствора. Зависимость угла поворота плоскости поляризации длины волны. Закон Био.
- •3. Радиоактивность. Виды радиоактивных распадов
- •1. Особенности прохождения света через систему поляризатор-анализатор. Закон
- •2. Электронно-лучевая трубка. Устройство элт, назначение электродов.
- •3. Радиоактивность. Виды радиоактивных распадов.
- •1. Явление оптической активности. Оптически активные вещества, зависимость угла поворота от концентрации раствора. Зависимость угла поворота плоскости поляризации от длины волны. Закон Био.
- •2. Гальванизация и электрофорез. Сущность процедур, воздействующий фактор, арат для гальванизации и электрофореза.
- •3 Радиоактивность; Виды радиоактивных распадов. Радиоактивные излучения. Их виды.
- •1. Физическне основы рефрактометрии. Рефрактометр, назначение и принцип действия, его применение для определения концентрации раствора
- •2. Блок-схема электронного диагностического прибора. Самописец.
- •1. Микроскоп, оптическая схема. Ход лучей в микроскопе. Основные характеристики микроскопа.
- •3. Физические основы биологического действия ионизирующих излучений.
- •Дифракция, интерференция
- •Поглощение ультразвуковых волн
- •2. Переменный электрический ток. Синусоидальный ток. Основные характеристики переменного тока: мгновенное, амплитудное и эффективное значения силы тока, период, линейная и круговая частоты, фаза.
- •3. Физические основы биологического действия ионизирующих излучений.
- •1. Кровь, как неньютоновская жидкость. Особенности течения крови в системе кровообращения, пульсовые волны.
- •1. Физические основы акустических методов диагностики в медицинской практике: аускультация и перкуссия.
- •2. Физические основы измерения артериального давления методом Короткова.
- •1 .Звук. Объективные характеристики звука. Интенсивность звука. Абсолютная и
- •1. Воздействие узи на биологические ткани. Применение ( узи ) в терапии и хирургии.
- •2. Рентгенография
- •3. Переменный электрический ток. Синусоидальный ток. Основные характеристики переменного тока: мгновенное, амплитудное и эффективное значения силы тока, период, линейная и круговая частоты, фаза.
- •1. Физические основы измерения артериального давления
- •2. Импедансометрия.
- •3. Рентгенодиагностика.
- •2. Физические основы акустических методов диагностики в медицинской практике аускультация и перкуссия.
- •3. Гидродинамическое сопротивление в разветвленных системах.
- •1. Явление оптической активности. Оптически активные вещества, зависимость угла поворота от концентрации раствора. Зависимость угла поворота плоскости поляризации от длины волны. Закон Био.
- •2. Электрический ток.
- •3. Гальванизация и электрофорез. Сущность процедур, воздействующий фактор. Аппарат для гальванизации и электрофореза.
1. Нуклоны. Ядерные силы, их свойства.
Ядро является весома прочным образованием. Силы, связывающие нуклоны в ядре, не могут быть силами электро-статического взаимодействия, т.к. между 2-мя протонами это силы отталкивания. Это и не граыитационные силы, т.к. они малы. Ядро существует за счет особых сил – сил притяжения, проявляющихся только в ядре и называющихся ядерными. Ядерное взаимодействие самое сильное взаимодействие. Ядерные силы обладают рядом особенностей: 1) ядерная сила имеет ограниченный радиус действия (носят короткодейственный характер). 2) обладают зарядом и независимостью, т.е. ядерные силы между каждой парой нуклонов действуют одинаковые по величине и характеру ядерные силы. 3) Они носят спиновый характер, т.е. зависят от ориентации спинов взаимодействующих нуклонов. 4) ядерные силы носят насыщенный характер, т.е. каждый нуклон взаимодействует с ограниченным числом других нуклонов. 5) ядерные силы носят нецентральный характер. 6) ядерные силы носят обменный характер. В процессе взаимодействия нуклоны обмениваются виртуальными частицами П-мезонами, которые являются квантами поля.
Под размерами ядер понимаются размеры области, в которой проявляется действие ядерных сил. r =1,3*10(c.-15)A(c.1/3)м, A – массовое число. Плотность ядерной материи огромна: ρ=m/V=180Т/см(с.3).
Масса ядер всегда меньше, чем сумма масс нуклонов, входящих в состав ядра. Это обозначает, что при образовании ядра из нуклонов должна выделяться энергия. Энергия, которую необходимо затратить, чтобы разложить ядро на составляющие его нуклоны, называется энергией связи ядра. ∆E=∆m*c(с.2); ∆Eсв=c(с.2)*∆m; ∆m – дефект массы; ∆m={Z(инд.mp)+(A-Z)*m(инд.n) – m(инд.я)}. Энергия связи ядер огромна. Удельной энергией связи δЕ называют энергию связи, приходящуюся на 1 нуклон. δЕ=∆Есв/А. Анализ этой зависимости позволяет вывести: 1) удельная энергия связи у различных ядер различна => нуклоны не одинаково прочно связаны в различных ядрах. 2) у легких ядер с А<10 удельная энергия связи растет с увеличением числа нуклонов в ядре. У тяжелых ядер с А>10 δЕ уменьшается с увеличением А
2. Блок-схема электронного диагностического прибора. Самописец
Установка состоит из генератора сигналов ГС, лампового вольтметра ЛВ и исследуемого устройства ИУ (самописца или ЭЛТ). Для определения чувствительности напряжение от генератора ГС подается на исследуемое устройство. Величина этого напряжения измеряется ламповым вольтметром ЛВ. Так как ламповый вольтметр показывает эффективное значение измеряемого напряжения, а чувствительность определяется через амплитудное значение этого напряжения, то показания вольтметра необходимо умножить на коэффициент равный \/2(U0=√2*Uэфф).
Величина изображения исследуемого напряжения на ленте самописца электрокардиографа или на экране ЭЛТ определяется с помощью линейки. Удобнее измерять двойную амплитуду изображения напряжения; в этом случае при вычислении чувствительности результат измерения нужно разделить на 2. Таким образом, формула для определения чувствительности приобретает вид:
К = H/2√2*Uэфф (мм/В),
где Н - величина двойной амплитуды изображения на экране ЭЛТ в миллиметрах, Uэфф - эффективное значение напряжения, подаваемого на исследуемое устройство.