
- •Электрический заряд
- •Перечислим свойства зарядов
- •Взаимодействие зарядов. Закон Кулона. Взаимодействие заряженных тел
- •Закон Кулона
- •Электрическое поле. (определение, напряженность, потенциал, рисунок эл.Поля) Электрическое поле
- •Напряженность электрического поля
- •Электрическое поле точечного заряда
- •Потенциал.
- •Поляризация диэлектриков (диэлектрик, какие бывают, как поляризуются) Диэлектрики в электрическом поле
- •Полярные и неполярные диэлектрики
- •Поляризация полярных диэлектриков
- •Поляризация неполярных диэлектриков
- •Диэлектрическая проницаемость
- •Работа электрического поля при перемещении заряда
- •Разность потенциалов
- •Электроемкость, конденсатор
- •Конденсаторы.
- •Электрические ток. Эдс. Электрический ток
- •Сила тока
- •Закон Ома. Сопротивление проводников. См. 3 случая. Сопротивление проводников
- •Зависимость сопротивления проводника от температуры.
- •Сверхпроводимость
- •Последовательное и параллельное соединение проводников
- •Закон Ома для полной цепи
- •Мощность тока. Закон Джоуля-Ленца. Почему выделяется тепло. Мощность тока
- •Работа и мощность тока
- •Взаимодействие токов (сила взаимодействия, магнитное поле, как реагирует) Магнитное поле.
- •Магнитное взаимодействие токов
- •Магнитное поле
- •Сила Лоренца (эл. И магн. Часть). Закон Ампера. Действие магнитного поля на движущийся заряд. Сила Лоренца
- •Закон Ампера
- •Закон Ампера
- •Магнетики. (намагничивание магнетиков) Магнитный поток
- •Магнетик,
- •Ферро магнетизм. Петля гистерезиса. Магнитные свойства вещества
- •Электромагнитная индукция. Правило винта. Эдс индукция. Магнитный поток.
- •Электромагнитная индукция
- •Индукция магнитного поля
- •Электромагнитная индукция
- •Закон электромагнитной индукции
- •Проявление электромагнитной индукции в разных условиях; токи Фуко; самоиндукция; ток при размыкании; энергия магнитного поля; коэфицент индуктивности. Явление самоиндукции
- •Явление самоиндукции. Индуктивность
- •Энергия магнитного поля
- •Затухающие колебания.
- •Бегущие волны, осцилятор, упругие волны Связанные гармонические осцилляторы. Упругие волны
- •4.3.2. Свойства бегущих волн
- •Эффект Доплера для звуковых волн
- •Гармонические колебания. Осциллятор
- •Сложение колебаний
- •Уравнение Максвелла. Электромагнитные волны.
-
Сложение колебаний
Колебания могут складываться и при этом усиливать или гасить друг друга, или изменять траекторию движения тела. Рассмотрим сложение колебаний, совершаемых в одном направлении. Пусть осциллятор совершает два одновременных колебания в одном направлении и одинаковой частоты ω0:
x1=A1cos(ω0t+1) и x2=A2cos(ω0t+2).
При
этом суммарное колебание координаты
x(t) равно x = x1 + x2.
Представим колебания x1 и x2
в виде векторов на плоскости (рис.),
модулями которых являются амплитуды
колебаний, а фазы колебаний будут служить
углами наклона векторов к оси x. При
изменении времени векторы x1
и x2, будут равномерно вращаться
в плоскости рисунка, однако разность
фаз между колебаниями остается неизменной.
Из рисунка видно, что вектор x = x1
+ x2, представляет собой сумму
колебаний x1 и x2. В
самом деле, проекции векторов x1,
и x2, на ось x соответственно
равны A1cos(ω0t+1)
и А2cos(ω0t+2),
а проекция вектора x равна сумме
этих проекций. Результирующее колебание
также можно записать в виде: x(t)=x1+x2=
= Acos(ω0t+).
Частота результирующего колебания
равна частоте складываемых колебаний,
т. е. результирующее колебание также
гармоническое. Амплитуду результирующего
колебания нетрудно найти из рис.
, (3.15)
а новую начальную фазу определить так:
. (3.16)
Из формулы (3.15) следует, что амплитуда результирующего колебания существенно зависит от значения разности фаз начальных колебаний. Если разность фаз 1–2=0, колебания находятся в фазе, и амплитуды A1 и A2 складываются A = A1 + A2. Если же разность фаз равна ±, колебания находятся в противофазе, т.е. амплитуда результирующего колебания A = |A1 – A2|.
Выше было рассмотрено сложение двух колебаний с одинаковой частотой, при этом результирующее колебание осталось гармоническим с той же частотой. Если складываются колебания разной частоты, то векторы x1 и x2 в плоскости будут вращаться с разной скоростью (рис.). Тогда результирующий вектор в процессе вращения будет изменяться по величине и описывать сложное негармоническое колебание.
Рассмотрим сложение колебаний во взаимно перпендикулярных направлениях. Наиболее простым примером такого колебания являются одновременные колебания частицы в направлениях x и y, происходящие с одинаковыми частотами и амплитудами (см. формулы (3.11)). Как было установлено, результирующее движение представляет собой равномерное вращение в плоскости по окружности с радиусом, равным амплитудам колебаний величин x и y. В случае неравных амплитуд и частот элементарных колебаний результирующее движение может происходить по весьма сложным траекториям и не будет гармоническим.
Таким образом, сложение гармонических колебаний с различными частотами и амплитудами позволяет осуществить колебание произвольной формы. Это обстоятельство используется для создания негармонических колебаний необходимой формы. Отсюда следует и обратное утверждение: всякое сложное негармоническое колебание может быть представлено в виде суммы простых гармонических колебаний. Другими словами, движение сложной колебательной системы со многими степенями свободы можно описать, рассматривая соответствующий набор гармонических осцилляторов.
Свободные механические колебания могут существовать в системах, где сохраняется полная механическая энергия. В реальных системах всегда присутствует трение, благодаря которому свободные колебания, возбужденные первоначально в системе, со временем будут затухать. Кроме того, колебания в различных системах часто происходят под действием внешней силы — так называемой вынуждающей силы. Колебания при наличии сил трения являются затухающими, а под действием внешней силы — вынужденными.