
- •1.Вiльнi електромагнiтнi коливання.Диференцiальне рiвняння
- •2.Складання гармонiчних коливань одного напрямку та близькоi частоти.
- •3.Складання взаемоперпендикулярних коливань.Фiгури Лiсажу.
- •4.Затухаючi коливання.Диференцiальне рiвняння затухаючих коливань,Перiод,частота.Величини,що характеризують затухання
- •5.Вимушенi коливання.Диференцiальне рiвняння вимушених коливань
- •6.Змінний струм. Ємнісний,індуктивний,повний опір кола.
- •7.Резонанс напруг та струмів.
- •8.Пружні хвилі. Рівняння плоскої хвилі. Фазова швидкість пружних хвиль. Хвильове рівняння. Енергія пружної хвилі.
- •9.Принцип суперпозиції. Групова швидкість. Стоячі хвилі.
- •10.Електромагнітні хвилі. Рівняння електромагнітної хвилі. Шкала емх та їх застосування.
- •11.Энергия электромагнитной волны.Вектор Умова-Пойтинга
- •12.Свет как электромагнитная волна.Принцип Гюйгенса.Монохроматичность и когерентность световых волн
- •13.Iнтерференцiя свiтла.Методи спостереження iнтерференцii
- •Зеркала френеля
- •14.Iнтерференцiя в тонких плiвках.Просвiтлення оптики
- •15.Дифракцiя.Принцип Гюйгненса-Френеля.Метод зон Френеля
- •16.Дифракция Френеля на отворi та диску
- •17.Дифракция Фраунгофера на щiлинi
- •18.Дифракцiя на дифракцiйнiй решiтцi.Характеристики дифракцiйной решiтки.
- •19.Дифракцiя на просторовiй решiтцi.Формулаа Вульфа-Брегга.Використання дифракцii/
- •20.Дисперсiя cвiтла.Розсiювання свiтла.
- •21.Поглинання свiтла.Закон Бугера
- •22.Поляризацiя.Природне та поляризоване свiтло.Ступiнь поляризацiй.Закон Малюса.Закон Брюстера.
- •23.Поширення свiтла в оптичному волокнi.Типи оптичних волокон.Основнi компоненти волз
- •24.Теплове випромiнювання .Основнi характеристики теплового випромiнювання.Абсолютно чорне тiло
- •25.Закони теплового випромiнювання: закон Стефана-Больцмана,закон Вiна,закон Кiргофа.Формула Планка.
- •26. Гальмівне рентгенівське випромінювання.
- •27.Явище зовнішнього фотоефекту. Закони зовнішнього фотоефекту. Рівняння Ейнштейна.
- •28.Квантова природа світла. Маса,імпульс та енергія фотона.
- •29.Тиск свiтла
- •30.Ефект Комптона
- •31.Модели атома Томсона та Резенфорда.Дослiд Резенфорда.
- •32.Спектр атома водню.Формула Бальмера.Постулати Бора
- •Формула Бальмера
- •33.Дослiд Франка I Герца
- •34.Гiпотеза де Бройля та II експериментальна перевiрка.Хвиля де Бройля.
- •Экспериментальная проверка
- •35.Спiввiдношення невизначеностей Гейзенберга
- •36.Хвильова функцiя та II властивостi.Фiзичний змicт хвильовоi функцii
- •38.Рух вiльноi частинки
- •39.Частица в одновимiрнiй потенцiальнiй ямi.
- •40.Проходження частинки крiзь потенцiальний бар’эр.Тунельний ефект.
- •42.Дослiди Штерна та Герлаха.Спiн .Спiн-орбiтальна взаэмодiя
- •41.Механiчний та магнiтний моменти електрона в атомi
- •43.Квантовi числа.Принцип Паулi.Переодична система елементiв Менделээва.
- •44.Механiчний та магнiтний моменти багатоелектронного атома.
- •45.Ефект Зеемана
- •46.Характеристичне рентгенiвське випромiнювання
- •47.Спонтаннi та вимушенi переходи електронiв в атомi
- •48. Вимушене випромiнювання.Оптичнi квантовi генератори та застосування
- •49.Газовi лазери.Властивостi лазерного випромiнювання.
- •51.Зонна структура металiв.Напiвпровiдникiв та дiелектрикiв.
- •52.Електропровiднiсть металiв.Робота виходу електронiв з металу.Термоелектронна емiсiя
- •53.Надпровiднiсть.Ефекти Мейснера та Джозефсона
- •Стационарный эффект
- •Нестационарный эффект
- •54.Ефект Холла.Квантовий ефект Холла
- •55.Власна та домiшкова провiднiсть напiвпровiдникiв.
- •Собственная проводимость
- •Примесная проводимость
- •Ректифікація
- •Застосування
- •57.Принцип роботи напiвпровiдникового транзистора.
- •58.Фотопровiднiсть напiвпровiдникiв.Внутрiншнiй фотоефект
- •59.Контакта рiзниця потенцiалiв
- •60.Явище Зеебека,Пельтьэ и Томсона
-
Зеркала френеля
Две
когерентные световые волны получаются
в результате отражения от двух зеркал М иN,
плоскости которых наклонены под небольшим
углом φ друг к другу.
Источником
служит узкая ярко освещенная щель S,
параллельная ребру между зеркалами.
Отраженные от зеркал пучки падают на
экран, и в той области, где они перекрываются
(поле
интерференции),
возникает интерференционная картина.
От прямого попадания лучей от
источника S экран
защищен ширмой.
3)
Бипризма Френеля
В данном интерференционном опыте, также предложенном Френелем, для разделения исходной световой волны на две используют призму с углом при вершине, близким к 180°.
Источником света служит ярко освещенная узкая щель S, параллельная преломляющему ребру бипризмы. Можно считать, что здесь образуются два близких мнимых изображения S1 и S2 источника S, так как каждая половина бипризмы отклоняет лучи на небольшой угол.
14.Iнтерференцiя в тонких плiвках.Просвiтлення оптики
Интерференция
света, отраженного двумя поверхностями
плоскопараллельной пластинки, когда
точка наблюдения P находится
в бесконечности, т.е. наблюдение ведется
либо глазом, аккомодированным на
бесконечность, либо на экране, расположенном
в фокальной плоскости собирающей линзы.
В этом случае оба луча, идущие от S к P, порождены одним падающим лучом и после отражения от передней и задней поверхностей пластинки параллельны друг другу. Оптическая разность хода между ними в точке P такая же, как на линии DC. Так как эти лучи параллельны то после попадании их на собирающую линзу образуется интерференционная картина. Полоса, соответствующая данному порядку интерференции, обусловлена светом, падающим на пластинку под вполне определенным углом α. Поэтому такие полосы называют интерференционными полосами равного наклона. Если ось объектива расположена перпендикулярно пластинке, полосы имеют вид концентрических колец с центром в фокусе, причем в центре картины порядок интерференции максимален.
Просветление оптики – увеличение качества оптических приборов, путем нанесения просветляющего вещества. Показатель преломления таких плёнок меньше показателя преломления стёкол линз. Просветляющие плёнки уменьшают светорассеяние и отражение падающего света от поверхности оптического элемента, соответственно улучшая светопропускание системы и контраст оптического изображения. Толщина пленки и её показатель преломления подбираются таким образом что бы их лучи гасили друг друга. Для наилучшего эффекта показатель преломления просветляющей плёнки должен равняться квадратному корню показателя преломления оптического стекла линзы. Наиболее подходящим материалом для просветляющей пленки является фторид бария, обладающий весьма низким (n=1,38) показателем преломления. В настоящее время однослойное просветление часто используется для лазерной оптики, рассчитанной на работу в узком спектральном диапазоне. Используя стекла с относительно высоким показателем преломления и напыляя пленку фторида бария, удается добиться минимальной отражающей способности около 1%. Главным преимуществом такого просветления является его дешевизна.