
- •1.Вiльнi електромагнiтнi коливання.Диференцiальне рiвняння
- •2.Складання гармонiчних коливань одного напрямку та близькоi частоти.
- •3.Складання взаемоперпендикулярних коливань.Фiгури Лiсажу.
- •4.Затухаючi коливання.Диференцiальне рiвняння затухаючих коливань,Перiод,частота.Величини,що характеризують затухання
- •5.Вимушенi коливання.Диференцiальне рiвняння вимушених коливань
- •6.Змінний струм. Ємнісний,індуктивний,повний опір кола.
- •7.Резонанс напруг та струмів.
- •8.Пружні хвилі. Рівняння плоскої хвилі. Фазова швидкість пружних хвиль. Хвильове рівняння. Енергія пружної хвилі.
- •9.Принцип суперпозиції. Групова швидкість. Стоячі хвилі.
- •10.Електромагнітні хвилі. Рівняння електромагнітної хвилі. Шкала емх та їх застосування.
- •11.Энергия электромагнитной волны.Вектор Умова-Пойтинга
- •12.Свет как электромагнитная волна.Принцип Гюйгенса.Монохроматичность и когерентность световых волн
- •13.Iнтерференцiя свiтла.Методи спостереження iнтерференцii
- •Зеркала френеля
- •14.Iнтерференцiя в тонких плiвках.Просвiтлення оптики
- •15.Дифракцiя.Принцип Гюйгненса-Френеля.Метод зон Френеля
- •16.Дифракция Френеля на отворi та диску
- •17.Дифракция Фраунгофера на щiлинi
- •18.Дифракцiя на дифракцiйнiй решiтцi.Характеристики дифракцiйной решiтки.
- •19.Дифракцiя на просторовiй решiтцi.Формулаа Вульфа-Брегга.Використання дифракцii/
- •20.Дисперсiя cвiтла.Розсiювання свiтла.
- •21.Поглинання свiтла.Закон Бугера
- •22.Поляризацiя.Природне та поляризоване свiтло.Ступiнь поляризацiй.Закон Малюса.Закон Брюстера.
- •23.Поширення свiтла в оптичному волокнi.Типи оптичних волокон.Основнi компоненти волз
- •24.Теплове випромiнювання .Основнi характеристики теплового випромiнювання.Абсолютно чорне тiло
- •25.Закони теплового випромiнювання: закон Стефана-Больцмана,закон Вiна,закон Кiргофа.Формула Планка.
- •26. Гальмівне рентгенівське випромінювання.
- •27.Явище зовнішнього фотоефекту. Закони зовнішнього фотоефекту. Рівняння Ейнштейна.
- •28.Квантова природа світла. Маса,імпульс та енергія фотона.
- •29.Тиск свiтла
- •30.Ефект Комптона
- •31.Модели атома Томсона та Резенфорда.Дослiд Резенфорда.
- •32.Спектр атома водню.Формула Бальмера.Постулати Бора
- •Формула Бальмера
- •33.Дослiд Франка I Герца
- •34.Гiпотеза де Бройля та II експериментальна перевiрка.Хвиля де Бройля.
- •Экспериментальная проверка
- •35.Спiввiдношення невизначеностей Гейзенберга
- •36.Хвильова функцiя та II властивостi.Фiзичний змicт хвильовоi функцii
- •38.Рух вiльноi частинки
- •39.Частица в одновимiрнiй потенцiальнiй ямi.
- •40.Проходження частинки крiзь потенцiальний бар’эр.Тунельний ефект.
- •42.Дослiди Штерна та Герлаха.Спiн .Спiн-орбiтальна взаэмодiя
- •41.Механiчний та магнiтний моменти електрона в атомi
- •43.Квантовi числа.Принцип Паулi.Переодична система елементiв Менделээва.
- •44.Механiчний та магнiтний моменти багатоелектронного атома.
- •45.Ефект Зеемана
- •46.Характеристичне рентгенiвське випромiнювання
- •47.Спонтаннi та вимушенi переходи електронiв в атомi
- •48. Вимушене випромiнювання.Оптичнi квантовi генератори та застосування
- •49.Газовi лазери.Властивостi лазерного випромiнювання.
- •51.Зонна структура металiв.Напiвпровiдникiв та дiелектрикiв.
- •52.Електропровiднiсть металiв.Робота виходу електронiв з металу.Термоелектронна емiсiя
- •53.Надпровiднiсть.Ефекти Мейснера та Джозефсона
- •Стационарный эффект
- •Нестационарный эффект
- •54.Ефект Холла.Квантовий ефект Холла
- •55.Власна та домiшкова провiднiсть напiвпровiдникiв.
- •Собственная проводимость
- •Примесная проводимость
- •Ректифікація
- •Застосування
- •57.Принцип роботи напiвпровiдникового транзистора.
- •58.Фотопровiднiсть напiвпровiдникiв.Внутрiншнiй фотоефект
- •59.Контакта рiзниця потенцiалiв
- •60.Явище Зеебека,Пельтьэ и Томсона
51.Зонна структура металiв.Напiвпровiдникiв та дiелектрикiв.
Зонная теория твёрдого тела — квантовомеханическая теория движения электронов в твёрдом теле.
1)проводники — зона проводимости и валентная зона перекрываются, образуя одну зону, называемую зоной проводимости, таким образом, электрон может свободно перемещаться между ними, получив любую допустимо малую энергию. Таким образом, при приложении к твердому телу разности потенциалов, электроны смогут свободно двигаться из точки с меньшим потенциалом в точку с большим, образуя электрический ток. К проводникам относят все металлы.
2)диэлектрики — зоны не перекрываются и расстояние между ними составляет более 3.5 эВ. Таким образом, для того, чтобы перевести электрон из валентной зоны в зону проводимости требуется значительная энергия, поэтому диэлектрики ток практически не проводят.
3)полупроводники — зоны не перекрываются и расстояние между ними составляет менее 3.5 эВ. Для того, чтобы перевести электрон из валентной зоны в зону проводимости требуется энергия меньшая, чем для диэлектрика, поэтому чистые (собственные, нелегированные) полупроводники слабо пропускают ток.
52.Електропровiднiсть металiв.Робота виходу електронiв з металу.Термоелектронна емiсiя
Електропровiднiсть металiв Ещё задолго до открытия электронов было экспериментально показано, что прохождение тока в металлах не связано, в отличие от тока в жидких электролитах, с переносом вещества металла. Опыт состоял в том, что через контакт двух различных металлов, например золота и серебра, в течение времени, исчисляемого многими месяцами, пропускался постоянный электрический ток. После этого исследовался материал вблизи контактов. Было показано, что никакого переноса вещества через границу не наблюдается и вещество по различные стороны границы раздела имеет тот же состав, что и до пропускания тока. Эти опыты показали, что атомы и молекулы металлов не принимают участия в переносе электрического тока, но они не ответили на вопрос о природе носителей заряда в металлах.
Робо́та ви́ходу — найменша кількість енергії, яку необхідно надати електрону для того, щоб вивести його з твердого тіла у вакуум.
Робота виходу є характеристикою речовини.
Як і будь-яку іншу енергетичну характеристику роботу виходу можна вимірювати в джоулях, але це непрактично. Зазвичай роботу виходу заведено вимірювати в електронвольтах.
Негативно заряджені електрони притягаються до позитивно заряджених ядер атомів. У твердих тілах, зокрема металах, частина електронів відносно вільна — не зв'язана із конкретними атомами. Проте ці електрони зв'язані із загальною структурою металу.
Термоелектронна емісія — явище зумовленого тепловим рухом вильоту електронів за межі речовини.Термоелектронна емісія суттєва для функціонування вакуумних ламп, в яких електрони випромінюються негативно зарядженим катодом. Для збільшення емісії катод зазвичай підігрівається ниткою розжарення.
53.Надпровiднiсть.Ефекти Мейснера та Джозефсона
Надпровідність — квантове явище протікання електричного струму у твердому тілі без втрат. Явище надпровідності було відкрито[1] в 1911 році голландським науковцем Камерлінґ-Оннесом, лауреатом Нобелівської премії 1913 року. Усього за відкриття в області надпровідності було видано п'ять Нобелівських премій з фізики: в 1913, 1972, 1973, 1987 та 2003 роках.
Явище надпровідності існує для низки матеріалів, не обов'язково добрих провідників при звичайних температурах. Перехід до надпровідного стану відбувається при певній температурі, яку називають критичною температурою надпровідного переходу. Надпровідність, проте, може бути зруйнована, якщо помістити зразок у зовнішнє магнітне поле, яке перевищує певне критичне значення. Це критичне магнітне поле зменшується при збільшенні температури.
Явище надпровідності — макроскопічне (видиме) проявлення квантової природи речовини: атомів та електронів.
Ефект Мейснера - це явище швидкого затухання магнітного поля в надпровіднику.
Надпровідник є ідеальним діамагнетиком. У магнітному полі в надпровіднику індукуються макроскопічні струми, які створюють власне магнітне поле, що повністю компенсує зовнішнє. Це явище, відкрите[1] в 1933 році німецькими фізиками Вальтером Мейснером та Робертом Охзенфельдом отримало назву ефекта Мейснера.
Ефект Мейснера руйнується в сильних магнітних полях. В залежності від типу надпровідника надпровідний стан при цьому або зникає повністю (т. зв. надпровідники першого роду), або ж надпровідник розбивається на нормальні й надпровідні області (надпровідники другого роду).
Пояснення ефекту Мейснера було наведено в теорії Лондонів (1935 рік) - першій теорії надпровідності, яка була повністю феноменологічною.
Ефектом Мейснера пояснюється левітація надпровідника над сильним магнітом (або магніта над надпровідником).
Эффект Джозефсона — явление протекания сверхпроводящего тока через тонкий слой диэлектрика, разделяющий два сверхпроводника. Такой ток называют джозефсоновским током, а такое соединение сверхпроводников — джозефсоновским контактом.
Различают стационарный и нестационарный эффекты Джозефсона.