Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Дискретные распределения.doc
Скачиваний:
1
Добавлен:
28.10.2018
Размер:
984.58 Кб
Скачать

Теперь введем понятие независимости событий.

Естественно считать события A и B независимыми, если .

Это означает: оттого что произошло событие B, вероятность события A не изменилась.

С учетом определения условной вероятности, это определение сведется к соотношению . Здесь уже нет необходимости требовать выполнения условия . Таким образом, приходим к окончательному определению.

События A и B называются независимыми, если P (AB) = P(A)P(B).

Последнее соотношение обычно и принимают за определение независимости двух событий.

Несколько событий называются независимыми в совокупности, если подобные соотношения выполняются для любого подмножества рассматриваемых событий. Так, например, три события A, B и C называются независимыми в совокупности, если выполняются следующие четыре соотношения:

Приведем ряд задач на условную вероятность и независимость событий и их решения.

Задача 21. Из полной колоды из 36 карт вытаскивают одну карту. Событие A – карта красная, B – карта туз. Будут ли они независимы?

Решение. Проведя вычисления согласно классическому определению вероятности, получим, что . Это означает, что события A и B независимы.

Задача 22. Решить ту же задачу для колоды, из которой удалена пиковая дама.

Решение. . Независимости нет.

Задача 23. Двое поочередно бросают монету. Выигрывает тот, у которого первым выпадет герб. Найти вероятности выигрыша для обоих игроков.

Решение. Можно считать, что элементарные события – это конечные последовательности вида (0, 0, 1,…, 0, 1). Для последовательности длины соответствующее элементарное событие имеет вероятность Игрок, начинающий бросать монету первым, выигрывает, если реализуется элементарное событие , состоящее из нечетного числа нулей и единиц. Поэтому вероятность его выигрыша равна

Выигрыш второго игрока соответствует четному числу нулей и единиц. Он равен

Из решения следует, что игра заканчивается за конечное время с вероятностью 1 (так как ).

Задача 24. Для того чтобы разрушить мост, нужно попадание не менее 2 бомб. Сбросили 3 бомбы. Вероятности попадания бомб равны соответственно 0, 1; 0, 3; 0, 4. Найти вероятность разрушения моста.

Решение. Пусть события A, B, C состоят в попадании 1-й, 2-й, 3-й бомбы соответственно. Тогда разрушение моста происходит только при реализации события В силу того что слагаемые в этой формуле попарно несовместны, а сомножители в слагаемых независимы, искомая вероятность равна

0,1∙0,3∙0,4 + 0,1∙0,3∙0,6 + 0,1∙0,7∙0,4 + 0,9∙0,3∙0,4 = 0,166.

Задача 25. К одному и тому же причалу должны пришвартоваться два грузовых судна. Известно, что каждое из них может с равной вероятностью подойти в любой момент фиксированных суток и должно разгружаться 8 ч. Найти вероятность того, что судну, пришедшему вторым, не придется дожидаться, пока закончит разгрузку первое судно.

Решение. Будем время измерять в сутках и долях суток. Тогда элементарные события – это пары чисел , заполняющие единичный квадрат, где x время прихода первого судна, y – время прихода второго судна. Все точки квадрата равновероятны. Это означает, что вероятность любого события (т. е. множества из единичного квадрата) равна площади области, соответствующей этому событию. Событие A состоит из точек единичного квадрата, для которых выполняется неравенство . Это неравенство соответствует тому, что судно, пришедшее первым, успеет разгрузиться к моменту прихода второго судна. Множество этих точек образует два прямоугольных равнобедренных треугольника со стороной 2/3. Суммарная площадь этих треугольников равна 4/9. Таким образом, .

Задача 26. На экзамене по теории вероятностей было 34 билета. Студент дважды извлекает по одному билету из предложенных билетов (не возвращая их). Студент подготовился лишь по 30-ти билетам? Какова вероятность того, что он сдаст экзамен, выбрав в первый раз «неудачный» билет?

Решение. Случайный выбор состоит в том, что два раза подряд извлекают по одному билету, причем вытянутый в первый раз билет назад не возвращается. Пусть событие В состоит в том, что первым вынут «неудачный» билет, а событие А состоит в том, что вторым вынут «удачный» билет. Очевидно, что события А и В зависимы, так как извлеченный в первый раз билет не возвращается в число всех билетов. Требуется найти вероятность события АВ.

По формуле условной вероятности ; ; , поэтому .