
- •Раздел 1. Конструкционные материалы
- •1. Атомно-кристаллическое строение металлов
- •1.1. Кристаллические решетки металлов
- •1.2. Полиморфизм
- •1.3. Дефекты кристаллического строения реальных кристаллов
- •1.4. Кристаллизация металлов
- •2. Свойства металлов
- •2.1. Механические свойства
- •Относительное удлинение
- •Относительное сужение
- •2.2. Физические и химические свойства
- •2.3. Технологические свойства
- •2.4. Эксплуатационные свойства
- •3. Строение и свойства сплавов
- •3.1. Основные сведения о металлических сплавах
- •3.2. Железоуглеродистые сплавы
- •Структурные составляющие железоуглеродистых сплавов
- •3.3. Диаграмма состояния FeFe3c
- •3.4. Влияние примесей на свойства железоуглеродистых сплавов
- •4. Термическая обработка стали
- •4.1. Основы термической обработки стали
- •4.2. Отжиг сталей, виды отжига
- •4.3. Нормализация сталей
- •4.4. Закалка сталей
- •4.5. Отпуск стали. Виды отпуска
- •4. 6. Химико-термическая обработка сталей
- •4.6.1. Цементация сталей
- •4.6.2. Азотирование стали
- •4.6.3. Цианирование сталей
- •4.6.4. Нитроцементация
- •4.6.5. Борирование
- •4.6.6. Диффузионная металлизация
- •4.7. Термомеханическая обработка стали
- •4. 8. Влияние нагрева на структуру и свойства деформированного металла
- •5. Чугуны
- •5.1.Классификация и маркировка
- •5.2. Свойства и применение чугуна
- •6. Стали.
- •6.1. Углеродистые стали. Классификация и маркировка
- •Влияние углерода и примесей на свойства углеродистой стали
- •6.2. Легированные стали и сплавы
- •6.2.1. Влияние легирующих элементов на свойства стали
- •6.2.2. Конструкционные легированные стали, их маркировка
- •Рессорно-пружинные стали
- •Шарикоподшипниковые стали
- •6.3. Инструментальные стали
- •6.3.1. Стали для измерительных инструментов
- •6.3.2. Стали для режущих инструментов
- •6.3.3. Инструментальные твердые сплавы
- •6.3.4. Штамповые стали
- •6.4. Стали и сплавы с особыми свойствами
- •6.4.1. Нержавеющие стали и сплавы
- •6.4.2. Хромистые нержавеющие стали
- •6.4.3. Хромоникелевые нержавеющие стали
- •6.4.4. Жаропрочные стали и сплавы
- •6.4.5. Жаропрочные сплавы на основе никеля и тугоплавких металлов
- •6.4.6. Жаростойкие стали и сплавы
- •6.4.7. Тугоплавкие металлы и сплавы на их основе
- •7. Цветные металлы и сплавы
- •7.1. Алюминий и его сплавы
- •7.2. Магний и его сплавы
- •7.3. Титан и его сплавы
- •7.4. Медь и ее сплавы
- •8. Неметаллические материалы
- •8.1. Пластмассы
- •Состав, классификация и свойства пластмасс
- •8.2. Резиновые материалы
- •9. Композиционные материалы Классификация композиционных материалов
- •9 .1. Армирующие материалы
- •9.2. Материалы матриц
- •9.3. Свойства композиционных материалов
- •10. Общие принципы выбора материалов
- •Физико-химические свойства
- •Механические свойства
6.4.6. Жаростойкие стали и сплавы
Жаростойкость это способность металлов и сплавов сопротивляться газовой коррозии при высоких температурах в течение длительного времени. Если деталь или изделие работают в окислительной газовой среде при температурах выше 500…550 С без больших нагрузок, то иногда достаточно, чтобы они были только жаростойкими (например, детали нагревательных печей, ящики для цементации и т.д.).
Процесс окисления это сложный процесс. Здесь наблюдаются и чисто химическое взаимодействие металла с кислородом, и диффузия атомов кислорода и металла через слой окислов. Поэтому строение окисной пленки имеет большое значение для жаростойкости металлов. Чем плотнее и прочнее окисная пленка, тем меньше через нее скорость диффузии, тем выше жаростойкость сплава.
Основной способ повышения жаростойкости легирование хромом, алюминием или кремнием, образующими на поверхности изделия плотные окислы Cr2O3, Al2O3 и SiО2, затрудняющие процессы диффузии.
Жаростойкие (окалиностойкие) стали и сплавы применяют для деталей, работающих в газовых средах при температуре 550…900 С. Жаростойкие стали содержат алюминий, хром и кремний. Такие стали не образуют окалины при высоких температурах.
Сюда относят сталь 40Х9С2, используемую для изготовления клапанов двигателей внутреннего сгорания, теплообменников, работающих до 850 С, сталь 08Х17Т для деталей, используемых в среде топочных газов с повышенным содержанием серы (рабочая температура не более 900 С), и сталь 36Х18Н25С2 (рабочая температура не более 1100 С) для клапанов двигателей внутреннего сгорания большой мощности, печных конвейеров и т.п.
Жаростойкие сплавы на никелевой основе представляют собой малоуглеродистые NiCr, NiCrFe или NiCrWFe твердые растворы, легированные Si, Al, Ti. Эти сплавы, имея, в основном, структуру гомогенных твердых растворов, отличаются сочетанием высокой жаростойкости и значительным электрическим сопротивлением (1,05…1,40 Ом мм2/м); их температура плавления составляет 1370…1420 С, предел прочности на растяжение 700…1000 МПа, относительное удлинение 20…40 %. Они имеют хорошие технологические свойства, что позволяет их сваривать, изготавливать из них проволоку, лист, ленту. Нихромы применяют для изготовления нагревательных элементов электрических печей и бытовых приборов, изделий, эксплуатируемых при высоких температурах и небольших механических нагрузках. В промышленности нашли применение нихромы типа Х10Н90, Х20Н80, Х40Н60, Х50Н50, а также нихромы с дополнительным легирование Х20Н75БЕЮ, Х25Н60В15Т. Наибольшей жаростойкостью в окислительных средах обладают нихромы Х20Н80, Х30Н70.
Для агрессивных сред (продукты сгорания топлива, содержащие соединения серы и др.) используют нихромы Х50Н50 и Х40Н60.
Недостатком этих сплавов является их хрупкость, что не позволяет использовать их в качестве материалов для деталей, работающих в напряженном состоянии и при динамических нагрузках.
6.4.7. Тугоплавкие металлы и сплавы на их основе
К тугоплавким металлам относятся металлы с температурой плавления более 1800 С. Наибольшее распространение в промышленности получили элементы ниобий и тантал, хром, молибден, вольфрам и рений.
Уникальные физико-механические свойства этих металлов, прежде всего высокие температуры плавления и жаропрочность сплавов тугоплавких металлов, позволяют использовать их для изготовления деталей и узлов, работающих в сложных экстремальных условиях: авиационной, ракетно-космической, атомной технике, приборостроении, радиоэлектронике. Изделия из тугоплавких металлов и сплавов на их основе работают при температурах больше 1000…1500 С как в кратковременном режиме, так и в условиях относительно длительной эксплуатации.
Однако тугоплавкие металлы склонны к хрупкому разрушению, так как им присуща высокая температура хладноломкости. Примеси внедрения, такие, как C, N, H, O, еще более повышают ее. Наиболее чистые металлы, получаемые зонной очисткой, имеют порог хрупкости в области минусовых температур и хорошую пластичность при комнатной температуре. Так, если для металлокерамического молибдена температура перехода в хрупкое состояние +200 С, то для молибдена, полученного зонной плавкой в вакууме, порог хрупкости 196 С.
Тугоплавкие металлы обладают низкой жаростойкостью. При температуре свыше 400…600 С их нужно защищать от окисления, иначе свойства тугоплавких металлов и сплавов резко ухудшаются. Для этих целей применяют металлические, интерметаллические и керамические покрытия. Для молибдена и вольфрама в качестве защитных покрытий наиболее часто используют силицидные покрытия (MoSi2, WSi2). При работе деталей в вакууме, инертных средах покрытия не нужны. Не требуется защитных покрытий для деталей и сплавов хрома, так как он обладает жаростойкостью до 1000 С из-за образования плотной тугоплавкой оксидной пленки Cr2O3.
Теплоустойчивые стали применяют в энергетическом машиностроении для деталей, работающих под нагрузкой при температуре 500…650 С в течение длительного времени. В зависимости от условий работы для изготовления деталей используют низколегированные стали после соответствующей термической обработки. Например, детали из стали 12МХ используются при 510 С (трубы паронагревателей, трубопроводы и коллекторные установки высокого давления, паровые котлы, детали цилиндров, газовые турбины и т.д.). Для тех же целей применяется сталь 12Х1МФ (рабочая температура 570…590 С). Сталь марки 15Х5 применяется для труб, деталей насосов, лопаток, подвесок котлов (рабочая температура 600 С).