Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
интернет отвт.doc
Скачиваний:
10
Добавлен:
27.10.2018
Размер:
300.03 Кб
Скачать

8.2.3. Лемма Фейджина

В отношении r {A, B, C} выполняется

MVD A   B в том и только в том случае,

когда выполняется MVD A  C.

8.2.4. Теорема Фейджина

Пусть имеется переменная отношения r с атрибутами A, B, C (в общем случае, составными). Отношение r декомпозируется без потерь на проекции {A, B} и {A, C} тогда и только тогда, когда для него выполняется MVD A  B | C

Теорема Фейджина обеспечивает основу для декомпозиции отношений, удаляющей "аномальные" многозначные зависимости, с приведением отношений в четвертую нормальную форму.

Переменная отношения r находится в четвертой нормальной форме (4NF) в том и только в том случае, когда она находится в BCNF, и все MVD r являются FD с детерминантами – возможными ключами отношения r.

В сущности, 4NF является BCNF, в которой многозначные зависимости вырождаются в функциональные (позволим себе на один момент отказаться от сокращений). Понятно, что отношение СЛУЖ_ПРО_ЗАДАН не находится в 4NF, поскольку детерминант MVD СЛУ_НОМ ПРО_НОМ и СЛУ_НОМ СЛУ_ЗАДАН не является возможным ключом, и эти MVD не являются функциональными. С другой стороны, отношения СЛУЖ_ПРО_НОМ и СЛУЖ_ЗАДАНИЕ находятся в BCNF и не содержат MVD, отличных от FD с детерминантом – возможным ключом. Поэтому они находятся в 4NF.

8.3. Зависимости проекции/соединения и пятая нормальная форма

Приведение отношения к 4NF предполагает его декомпозицию без потерь на две проекции (как и в случае 2NF, 3NF и BCNF).

Однако бывают (хотя и нечасто) случаи, когда декомпозиция без потерь на две проекции невозможна, но можно произвести декомпозицию без потерь на большее число проекций.

Будем называть n-декомпозируемым отношением отношение, которое может быть декомпозировано без потерь на n проекций.

До сих пор мы имели дело с 2-декомпозируемыми отношениями.

8.3.1. N-декомпозируемые отношения

Определение

В переменной отношения r с атрибутами (возможно, составными) A и B MVD AB называется тривиальной, если либо AB, либо A UNION B совпадает с заголовком отношения r.

Тривиальная MVD всегда удовлетворяется. При AB она вырождается в тривиальную FD. В случае A UNION B = Hr требования многозначной зависимости соблюдаются очевидным образо

Для примера n-декомпозируемого отношения при n > 2 рассмотрим пятый вариант переменной отношения СЛУЖ_ПРО_ЗАДАН, в которой имеется единственно возможный ключ {СЛУ_НОМ, ПРО_НОМ, СЛУ_ЗАДАН} и отсутствуют нетривиальные MVD. Пример значения переменной отношения приведен на рис. 8.3.

Как показано на рис. 8.3, результат естественного соединения проекций СЛУЖ_ПРО_НОМ и ПРО_НОМ_ЗАДАН почти совпадает с телом исходного отношения СЛУЖ_ПРО_ЗАДАН, но в нем присутствует один лишний кортеж, который исчезнет после выполнения заключительного естественного соединения с проекцией СЛУЖ_ЗАДАНИЕ.

Рис.8.3. Возможное значение переменной отношения СЛУЖ_ПРО_ЗАДАН (пятый вариант), результаты проекций и результат частичного естественного соединения

8.3.2. Зависимость проекции/соединения

Утверждение о том, что тело отношения СЛУЖ_ПРО_ЗАДАН восстанавливается без потерь путем естественного соединения его проекций СЛУЖ_ПРО_НОМ, ПРО_НОМ_ЗАДАН и СЛУЖ_ЗАДАНИЕ эквивалентно следующему утверждению (ТСПЗ, ТСПН, ТПНЗ и ТСЗ обозначают тела значений переменных отношений СЛУЖ_ПРО_ЗАДАН, СЛУЖ_ПРО_НОМ, ПРО_НОМ_ЗАДАН и СЛУЖ_ЗАДАНИЕ соответственно):

IF (<сн, пн> ТСПН AND <пн, сз>  ТПНЗ AND <сн, сз> ТСЗ)

THEN <сн, пн, сз>  ТСПЗ

Чтобы возможность восстановления без потерь отношения СЛУЖ_ПРО_ЗАДАН путем естественного соединения его проекций СЛУЖ_ПРО_НОМ, ПРО_НОМ_ЗАДАН и СЛУЖ_ЗАДАНИЕ существовала при любом допустимом значении переменной отношения СЛУЖ_ПРО_ЗАДАН, должно поддерживаться следующее ограничение:

IF (<сн1, пн1, сз2>  ТСПЗ AND <сн2, пн1, сз1>  ТСПЗ

AND <сн1, пн2, сз1>ТСПЗ)

THEN <сн1, пн1, сз1>  ТСПЗ

.....................

Это обычное ограничение реального мира, которое для отношения СЛУЖ_ПРО_ЗАДАН может быть сформулировано на естественном языке следующим образом:

Если служащий с номером сн участвует в проекте пн, и в проекте пн выполняется задание сз, и служащий с номером сн выполняет задание сз, то служащий с номером сн выполняет задание сз в проекте пн.

В общем виде такое ограничение называется зависимостью проекции/соединения. Вот формальное определение.

Пусть задана переменная отношения r, и A, B, …, Z являются произвольными подмножествами заголовка r (составными, перекрывающимися атрибутами). В переменной отношения r удовлетворяется зависимость проекции/соединения (Project-Join Dependency – PJD) *( A, B, …, Z) тогда и только тогда, когда любое допустимое значение r можно получить путем естественного соединения проекций этого значения на атрибуты A, B, …, Z