- •1.1.Введение
- •1.1.1.Термины и определения
- •1.1.2. Основные функции субд
- •1.1.3. Классификация субд
- •1.1.4. Возможности субд
- •1.2. Обзор структуры субд
- •1.2.1.Источники управляющих инструкций
- •1.2.2.Обработка запросов
- •1.2.3. Менеджеры буферов и хранения данных
- •1.2.4. Обработка транзакций
- •1.2.5.Процессор запросов
- •2.2. Программирование приложений баз данных
- •2.3. Реализация систем баз данных
- •3.1.2.Домен
- •3.1.3. Схема отношения, схема базы данных
- •3.1.4. Кортеж, отношение
- •2.1. Проектирование баз данных
- •3.1.2.Домен
- •3.1.3. Схема отношения, схема базы данных
- •3.1.4. Кортеж, отношение
- •3.2. Фундаментальные свойства отношений
- •3.3. Реляционная модель данных
- •4.4. Специальные реляционные операции
- •5.2.Исчисление кортежей
- •5.2.1.Правильно построенные формулы
- •5.2.2. Кванторы, свободные и связанные переменные
- •5.2.3.Целевые списки и выражения реляционного исчисления
- •Лекция 6. Функциональные зависимости и декомпозиция без потерь Учебные вопросы
- •6.2. Замыкание множества функциональных зависимостей
- •6.3. Аксиомы Армстронга.
- •6.4.Замыкание множества атрибутов
- •6.5. Минимальное покрытие множества функциональных зависимостей
- •6.6.Декомпозиция без потерь и функциональные зависимости
- •6.7. Корректные и некорректные декомпозиции отношений. Теорема Хита
- •6.8. Диаграммы функциональных зависимостей
- •7.1. Введение
- •7.1. Введение
- •7.2. Минимальные функциональные зависимости и вторая нормальная форма
- •8.1. Введение
- •8.1. Введение
- •8.2. Многозначные зависимости и четвертая нормальная форма
- •8.2.1. Аномалии обновлений при наличии многозначных зависимостей и возможная декомпозиция
- •8.2.2. Многозначные зависимости. Теорема Фейджина. Четвертая нормальная форма
- •8.2.3. Лемма Фейджина
- •8.2.4. Теорема Фейджина
- •8.3. Зависимости проекции/соединения и пятая нормальная форма
- •8.3.2. Зависимость проекции/соединения
- •8.3.3. Аномалии, вызываемые наличием зависимости проекции/соединения
- •8.3.4. Устранение аномалий обновления в 3-декомпозиции
- •8.3.5. Пятая нормальная форма
- •Лекция 9. Sql язык структурированных запросов
- •9.1. Введение
- •9.2. Функции языка sql
- •9.3 История
- •9.4.Вопросы совместимости
- •9.5. Преимущества и недостатки
- •9.5.1. Преимущества
- •1. Независимость от конкретной субд
- •2. Наличие стандартов
- •3. Декларативность
- •9.5.2.Недостатки
- •1. Несоответствие реляционной модели данных
- •9.7. Проекция в sql
- •9.8. Выбор в sql
- •9.9. Сравнение строк
- •9.10. Запросы к нескольким отношениям9.10.1. Декартово произведение и соединение в sql
- •Дисциплина “Обработка информации баз данных и знаний” Лекция 10. Sql язык структурированных запросов
- •10.1.2. Объединение, пересечение и разность запросов
- •10.2. Подзапросы
- •10.2.1. Подзапросы для вычисления скалярных значений
- •10.2.2. Условия уровня отношения
- •10.2.3. Условия уровня кортежа
- •10.2.4. Коррелированные подзапросы
- •10.2.5. Подзапросы в предложениях from
- •10.2.6. Выражения соединения в sql
8.2. Многозначные зависимости и четвертая нормальная форма
8.2.1. Аномалии обновлений при наличии многозначных зависимостей и возможная декомпозиция
В новом варианте переменной отношения единственным возможным ключом является заголовок отношения {СЛУ_НОМ, ПРО_НОМ, СЛУ_ЗАДАН}. Кортеж <сн, пн, сз> входит в тело отношения в том и только в том случае, когда служащий с номером сн выполняет в проекте пн задание сз.
Поскольку для каждого служащего указываются все проекты, в которых он участвует, и все задания, которые он должен выполнять в этих проектах, для каждого допустимого значения переменной отношения СЛУЖ_ПРО_ЗАДАН должно выполняться следующее ограничение (ТСПЗ обозначает тело отношения):
IF (<сн, пн1, сз1> ТСПЗ AND <сн, пн2, сз2> ТСПЗ)THEN (<сн, пн1, сз2> ТСПЗ AND <сн, пн2, сз1> ТСПЗ)
Наличие такого ограничения (как мы скоро увидим, это ограничение порождается наличием многозначной зависимости) приводит к тому, что при работе с отношением СЛУЖ_ПРО_ЗАДАН проявляются аномалии обновления.
Добавление кортежа. Если уже участвующий в проектах служащий присоединяется к новому проекту, то к телу значения переменной отношения СЛУЖ_ПРО_ЗАДАН требуется добавить столько кортежей, сколько заданий выполняет этот служащий.
Удаление кортежей. Если служащий прекращает участие в проектах, то отсутствует возможность сохранить данные о заданиях, которые он может выполнять.
Модификация кортежей. При изменении одного из заданий служащего необходимо изменить значение атрибута СЛУ_ЗАДАН в стольких кортежах, в скольких проектах участвует служащий.
Трудности, связанные с обновлением переменной отношения СЛУЖ_ПРО_ЗАДАН, решаются путем его декомпозиции на две переменных отношений: СЛУЖ_ПРО_НОМ {СЛУ_НОМ, ПРО_НОМ} и СЛУЖ_ЗАДАНИЕ {СЛУ_НОМ, СЛУ_ЗАДАН}. Значения этих переменных отношений, соответствующие значению переменной отношения СЛУЖ_ПРО_ЗАДАН с рис. 8.1, показаны на рис. 8.2.
Легко видеть, что декомпозиция, представленная на рис. 8.2, является декомпозицией без потерь и что эта декомпозиция решает перечисленные выше проблемы с обновлением переменной отношения СЛУЖ_ПРО_ЗАДАН.
Рис.8.2. Значения переменных отношений СЛУЖ_ПРО_НОМ и СЛУЖ_ЗАДАНИЕ
Добавление кортежа. Если некоторый уже участвующий в проектах служащий присоединяется к новому проекту, то к телу значения переменной отношения СЛУЖ_ПРО_НОМ требуется добавить один кортеж, соответствующий новому проекту.
Удаление кортежей. Если служащий прекращает участие в проектах, то данные о заданиях, которые он может выполнять, остаются в отношении СЛУЖ_ЗАДАНИЕ.
Модификация кортежей. При изменении одного из заданий служащего необходимо изменить значение атрибута СЛУ_ЗАДАН в одном кортеже отношения СЛУЖ_ЗАДАНИЕ.
8.2.2. Многозначные зависимости. Теорема Фейджина. Четвертая нормальная форма
Последний вариант переменной отношения СЛУЖ_ПРО_ЗАДАН находится в BCNF, поскольку все атрибуты заголовка отношения входят в состав единственно возможного ключа. В этом отношении вообще отсутствуют нетривиальные FD.
Поэтому ранее обсуждавшиеся принципы нормализации здесь неприменимы, но, тем не менее, мы получили полезную декомпозицию.
Все дело в том, что в случае четвертого варианта отношения СЛУЖ_ПРО_ЗАДАН мы имеем дело с новым видом зависимости, впервые обнаруженным Роном Фейджином в 1971 г.
Фейджин назвал зависимости этого вида многозначными (multi-valued dependency – MVD). Как мы увидим немного позже, MVD является обобщением понятия FD.
В отношении СЛУЖ_ПРО_ЗАДАН выполняются две MVD: СЛУ_НОМПРО_НОМ и СЛУ_НОМ СЛУ_ЗАДАН. Первая MVD означает, что каждому значению атрибута СЛУ_НОМ соответствует определяемое только этим значением множество значений атрибута ПРО_НОМ. Другими словами, в результате вычисления алгебраического выражения
(СЛУЖ_ПРО_НОМ WHERE (СЛУ_НОМ = сн AND СЛУ_ЗАДАН = сз)) PROJECT {ПРО_НОМ}
для фиксированного допустимого значения сн и любого допустимого значения сз мы всегда получим одно и то же множество значений атрибута ПРО_НОМ. Аналогично трактуется вторая MVD.
В переменной отношения r с атрибутами A, B, C (в общем случае, составными) имеется многозначная зависимость B от A (A B) в том и только в том случае, когда множество значений атрибута B, соответствующее паре значений атрибутов A и C, зависит от значения A и не зависит от значения C.
Многозначные зависимости обладают интересным свойством"двойственности", которое демонстрирует следующая лемма.
