
- •1. Основные принципы и понятия используемые при защите информации.
- •2.Перестановочный шифр.
- •Пример (шифр Древней Спарты)
- •3.Подстановочный шифр.
- •4. Понятие потокового шифра,основные характеристики потокового шифра.Вариант потокового шифра в системе gsm(стандарт а5/1).
- •Классификация поточных шифров
- •Синхронные поточные шифры
- •Самосинхронизирующиеся поточные шифры
- •Достоинства госТа
- •Критика госТа
- •Возможные применения
- •9. Схема Deffie-Hellmana
- •10. Основные принципы несимметричных алгоритмов. Алгоритм упаковки рюкзака
- •11 Алгоритм rsa
- •12. Алгоритм Эль Гамаля
- •14. Электронная подпись rsa
- •15. Электронная подпись Эль Гамаля
- •16. Понятие многоуровневой защиты информации. Вариант ее реализации.
- •17. Китайская теорема об остатках
- •18. Метод множителей Лагранжа
- •19. Система выработки общего ключа
- •20. Слепая подпись
- •21. Протокол аутентификации без разглашения
- •Принцип работы
- •Сравнение с некоторыми типами алгоритмов
- •22. Протокол ssl
- •История и развитие
- •Применение
- •Основные цели протокола в порядке приоритетности
- •Аутентификация и обмен ключами
- •25. Квантовая криптография
- •26. Криптография на эллиптических кривых. Основные принципы и свойства.
- •27. Правовые аспекты защиты информации
- •28. Стенография( тайнопись). Основные принципы и методы.
- •29. Безопасность сенсорных сетей. Протоколы установки группового ключа
- •30. Безопасность rfid. Проблемы анонимности и защиты покупателя
- •31. Безопасность Windows nt/2000/xp
- •33. Защита информации от несанкционированного использования и копирования.
4. Понятие потокового шифра,основные характеристики потокового шифра.Вариант потокового шифра в системе gsm(стандарт а5/1).
Пото́чный шифр — это симметричный шифр, в котором каждый символ открытого текста преобразуется в символ шифрованного текста в зависимости не только от используемого ключа, но и от его расположения в потоке открытого текста. Поточный шифр реализует другой подход к симметричному шифрованию, нежели блочные шифры. При блочном шифровании открытый текст разбивается на блоки равной длины, при этом совпадающие блоки при данном ключе всегда шифруется одинаково, при поточном шифровании это не так.
Классификация поточных шифров
Допустим, например, что в режиме гаммирования для поточных шифров при передаче по каналу связи произошло искажение одного знака шифротекста. Очевидно, что в этом случае все знаки, принятые без искажения, будут расшифрованы правильно. Произойдёт потеря лишь одного знака текста. А теперь представим, что один из знаков шифротекста при передаче по каналу связи был потерян. Это приведёт к неправильному расшифрованию всего текста, следующего за потерянным знаком. Практически во всех каналах передачи данных для поточных систем шифрования присутствуют помехи. Поэтому для предотвращения потери информации решают проблему синхронизации шифрования и расшифрования текста. По способу решения этой проблемы шифрсистемы подразделяются на синхронные и системы с самосинхронизацией.
Синхронные поточные шифры
Определение:
Синхронные поточные шифры (СПШ) — шифры, в которых поток ключей генерируется независимо от открытого текста и шифротекста.
При шифровании генератор потока ключей выдаёт биты потока ключей, которые идентичны битам потока ключей при дешифровании. Потеря знака шифротекста приведёт к нарушению синхронизации между этими двумя генераторами и невозможности расшифрования оставшейся части сообщения. Очевидно, что в этой ситуации отправитель и получатель должны повторно синхронизоваться для продолжения работы.
Обычно синхронизация производится вставкой в передаваемое сообщение специальных маркеров. В результате этого пропущенный при передаче знак приводит к неверному расшифрованию лишь до тех пор, пока не будет принят один из маркеров.
Заметим, что выполняться синхронизация должна так, чтобы ни одна часть потока ключей не была повторена. Поэтому переводить генератор в более раннее состояние не имеет смысла.
Плюсы СПШ: отсутствие эффекта распространения ошибок (только искажённый бит будет расшифрован неверно); предохраняют от любых вставок и удалений шифротекста, так как они приведут к потере синхронизации и будут обнаружены.
Минусы СПШ: уязвимы к изменению отдельных бит шифрованного текста. Если злоумышленнику известен открытый текст, он может изменить эти биты так, чтобы они расшифровывались, как ему надо.
Самосинхронизирующиеся поточные шифры
Основная идея построения была запатентована в 1946 г. в США. Определение: Самосинхронизирующиеся поточные шифры (асинхронные поточные шифры (АПШ)) – шифры, в которых поток ключей создаётся функцией ключа и фиксированного числа знаков шифротекста.
Итак, внутреннее состояние генератора потока ключей является функцией предыдущих N битов шифротекста. Поэтому расшифрующий генератор потока ключей, приняв N битов, автоматически синхронизируется с шифрующим генератором. Реализация этого режима происходит следующим образом: каждое сообщение начинается случайным заголовком длиной N битов; заголовок шифруется, передаётся и расшифровывается; расшифровка является неправильной, зато после этих N бит оба генератора будут синхронизированы.
Плюсы АПШ: Размешивание статистики открытого текста. Так как каждый знак открытого текста влияет на следующий шифротекст, статистические свойства открытого текста распространяются на весь шифротекст. Следовательно, АПШ может быть более устойчивым к атакам на основе избыточности открытого текста, чем СПШ.
Минусы АПШ: распространение ошибки (каждому неправильному биту шифротекста соответствуют N ошибок в открытом тексте); чувствительны к вскрытию повторной передачей.
Система защиты GSM базируется на так называемом алгоритме A5/1, представляющем собой 64-битный двоичный код. Отметим, что на сегодня большинство современных компьютерных систем работает с ключами длиной 128-512 бит, что считается более надежным. В 2007 году Ассоциация GSM разработала стандарт A5/3, обладающий длиной ключа в 128 бит, однако лишь незначительное число операторов развернуло поддержку этой технологии.
8. Российский ГОСТ 28147-89.
ГОСТ 28147-89 — советский и российский стандарт симметричного шифрования, введённый в 1990 году, также является стандартом СНГ. Полное название — «ГОСТ 28147-89 Системы обработки информации. Защита криптографическая. Алгоритм криптографического преобразования». Блочный шифроалгоритм. При использовании метода шифрования с гаммированием, может выполнять функции поточного шифроалгоритма.
По некоторым сведениям[1], история этого шифра гораздо более давняя. Алгоритм, положенный впоследствии в основу стандарта, родился, предположительно, в недрах Восьмого Главного управления КГБ СССР (ныне в структуре ФСБ), скорее всего, в одном из подведомственных ему закрытых НИИ, вероятно, ещё в 1970-х годах в рамках проектов создания программных и аппаратных реализаций шифра для различных компьютерных платформ.
С момента опубликования ГОСТа на нём стоял ограничительный гриф «Для служебного пользования», и формально шифр был объявлен «полностью открытым» только в мае 1994 года. История создания шифра и критерии разработчиков по состоянию на 2010 год не опубликованы.
Описание ГОСТ 28147-89 — блочный шифр с 256-битным ключом и 32 циклами преобразования, оперирующий 64-битными блоками. Основа алгоритма шифра — Сеть Фейстеля. Базовым режимом шифрования по ГОСТ 28147-89 является режим простой замены (определены также более сложные режимы гаммирование, гаммирование с обратной связью и режим имитовставки). Для зашифрования в этом режиме открытый текст сначала разбивается на две половины (младшие биты — A, старшие биты — B[2]). На i-ом цикле используется подключ Ki:
(
= двоичное «исключающее или»)
Для генерации подключей исходный 256-битный ключ разбивается на восемь 32-битных блоков: K1…K8.
Ключи K9…K24 являются циклическим повторением ключей K1…K8 (нумеруются от младших битов к старшим). Ключи K25…K32 являются ключами K1…K8, идущими в обратном порядке.
После выполнения всех 32 раундов алгоритма, блоки A33 и B33 склеиваются (обратите внимание, что старшим битом становится A33, а младшим — B33) — результат есть результат работы алгоритма.
Расшифрование выполняется так же, как и зашифрование, но инвертируется порядок подключей Ki.
Функция f(Ai,Ki) вычисляется следующим образом:
Ai и Ki складываются по модулю 232.
Результат разбивается на восемь 4-битовых подпоследовательностей, каждая из которых поступает на вход своего узла таблицы замен (в порядке возрастания старшинства битов), называемого ниже S-блоком. Общее количество S-блоков ГОСТа — восемь, то есть столько же, сколько и подпоследовательностей. Каждый S-блок представляет собой перестановку чисел от 0 до 15. Первая 4-битная подпоследовательность попадает на вход первого S-блока, вторая — на вход второго и т. д.
Если S-блок выглядит так:
1, 15, 13, 0, 5, 7, 10, 4, 9, 2, 3, 14, 6, 11, 8, 12
и на входе S-блока 0, то на выходе будет 1, если 4, то на выходе будет 5, если на входе 12, то на выходе 6 и т. д.
Выходы всех восьми S-блоков объединяются в 32-битное слово, затем всё слово циклически сдвигается влево (к старшим разрядам) на 11 битов.