
- •1.Основы физиологии клетки
- •1.1. Общие сведения о клетке
- •1.2. Клеточная мембрана
- •1.3. Ядро клетки
- •1.4. Рибосомы
- •1.5. Эндоплазматический ретикулум и аппарат Гольджи
- •1.6. Митохондрии и лизосомы
- •1.7. Цитоскелет
- •2.Структурные и функциональные принципы организа- ции нервной системы
- •2.1. Взаимодействие сенсорных, моторных и мотивационных систем в переработке информации
- •2.2. Общие принципы анатомической организации нервной системы
- •2.3. Спинной мозг
- •2.4. Ствол мозга
- •Функции черепномозговых нервов
- •2.5. Мозжечок
- •2.6. Промежуточный мозг
- •2.7. Конечный мозг (полушария)
- •2.8. Защита мозга, цереброспинальная жидкость или ликвор
- •2.9. Кровоснабжение мозга и гематоэнцефалический барьер
- •2.10. Принципы организации функциональных систем мозга
- •2.11. Элементарные операции мозга - основа психических процессов
- •3. Основы нейронной теории
- •3.1. Нейроны
- •3.2. Классификация нейронов
- •3.3. Электрические сигналы
- •3.4. Входные сигналы
- •3.5. Объединённый сигнал - потенциал действия
- •3.6. Проведение потенциала действия
- •3.7. Выходной сигнал
- •3.8. Глия
- •4. Мембранные механизмы возникновения и проведения электрических сигналов
- •4.1. Концентрационный и электрический градиенты
- •4.2. Активный транспорт
- •4.3. Пассивный транспорт - диффузия
- •4.4. Управляемые каналы
- •4.5. Блокаторы ионных каналов
- •4.6. Мембранный потенциал покоя
- •4.7. Потенциал действия
- •4.8. Механизм проведения потенциалов действия
- •5. Механизм передачи информации в синапсах
- •5.1. Две разновидности синапсов
- •5.2. Передача возбуждения в нервно-мышечном синапсе
- •5.3. Помехи в синаптической передаче
- •5.4. Передача возбуждения в центральных синапсах
- •5.5. Постсинаптическое и пресинаптическое торможение
- •5.6. Функциональное значение и разновидности торможения в цнс
- •5.7. Функциональное значение химических синапсов в переносе информации
- •5.8. Электрические синапсы
- •6. Нейромедиаторы
- •6.1. Происхождение и химическая природа нейромедиаторов
- •6.2. Синтез нейромедиаторов
- •6.3. Выделение медиаторов
- •6.4. Разные постсинаптические рецепторы: ионотропное и метаботропное управление
- •6.5. Удаление медиаторов из синаптической щели
- •6.6. Отдельные медиаторные системы
- •6.6.1. Ацетилхолин
- •6.6.2. Биогенные амины
- •6.6.3. Серотонин
- •6.6.4. Гистамин
- •6.6.5. Глутамат
- •6.6.6. Гамк и глицин
- •6.6.7. Нейропептиды
- •6.7. Опиатные пептиды
- •7. Рефлексы
- •7.1. Рефлекс - стереотипная приспособительная реакция
- •7.2. Классификации рефлексов
- •7.3. Рефлекторная дуга
- •7.4. Нервные центры
- •7.5. Рефлексы растяжения - простая модель стереотипной реакции
- •7.6. Сухожильные рефлексы
- •7.7. Рефлекторная регуляция напряжения мышц
- •7.8. Сгибательные и ритмические рефлексы спинного мозга
- •7.9. Координация рефлекторной деятельности
- •7.10. Вегетативные рефлексы
- •7.11. Безусловные и условные рефлексы
- •8. Эффекторы
- •8.1. Строение скелетных мышц
- •8.2. Механизм сокращения мышечных волокон
- •8.3. Двигательные единицы
- •8.4. Зависимость мышечного сокращения от частоты нервных импульсов
- •8.5. Режимы мышечных сокращений
- •8.6. Регуляция длины и напряжения мышц
- •8.7. Гладкие мышцы
- •8.8. Сердечная мышца - миокард
- •8.9. Железы
- •9. Функциональная специализация коры больших
- •9.1. Соматосенсорная кора
- •9.2. Первичная зрительная кора
- •9.3. Вторичная (экстрастриарная) зрительная кора
- •9.4. Слуховая кора
- •9.5. Теменно-височно-затылочная ассоциативная кора
- •9.6. Префронтальная ассоциативная кора
- •9.7. Лимбическая кора
- •9.8. Височная кора
- •9.9 Электроэнцефалограмма
- •10. Двигательная функция цнс
- •10.1. Иерархическая организация моторных систем
- •10.2. Двигательные программы спинного мозга и ствола
- •10.3. Нисходящие пути от двигательных центров ствола
- •10.4. Нисходящие пути моторной коры
- •10.5. Планирование будущих действий и вторичные моторные области
- •10.6. Функциональная организация первичной моторной коры
- •10.7. Функциональная организация мозжечка
- •10.8. Взаимодействие нейронов внутри мозжечка
- •10.9. Функциональная организация базальных ганглиев
- •10.10. Последствия повреждений базальных ганглиев
- •11. Вегетативная функция цнс
- •11.1. Вегетативная нервная система
- •11.2. Периферический отдел вегетативной нервной системы
- •11.3. Тонус вегетативных нервов
- •11.4. Афферентное звено вегетативных рефлексов
- •11.5. Характер симпатического и парасимпатического влияния на деятельность внутренних органов
- •11.6. Передача возбуждения в синапсах вегетативной нервной системы
- •11.7. Центры вегетативной регуляции спинного мозга и ствола
- •11. 8. Роль гипоталамуса в регуляции вегетативных функций
- •11.9. Вегетативные механизмы регуляции кровообращения
- •11.10. Основные звенья регуляции дыхания
- •12. Основы нейроэндокринной регуляции функций
- •12.1. Происхождение, секреция, транспорт и действие гормонов
- •12.2. Регуляция образования гормонов
- •12.3. Роль гипоталамуса в регуляции образования гормонов передней доли гипофиза (гипоталамо-аденогипофизарная система)
- •12.4. Физиологическая роль гормонов аденогипофиза
- •12.5. Гипоталамус и гормоны нейрогипофиза
- •12.6. Гормоны мозгового вещества надпочечников и симпатоадреналовая реакция
- •12.7. Гормоны коры надпочечников
- •12.8. Гормоны щитовидной железы
- •12.9. Гормоны поджелудочной железы
- •12.10. Половые гормоны
- •12.11. Стресс
- •13. Интегративные механизмы регуляции поведения, основанного на биологических мотивациях
- •13.1. Мотивации
- •13.2. Кибернетические принципы гомеостатического регулирования
- •13.3. Гипоталамус - важнейшая мотивационная структура мозга
- •13.4. Лимбическая система мозга
- •13.5. Роль мезолимбической системы в формировании мотиваций
- •13.6. Физиологические механизмы боли.
- •13.7. Роль миндалин в образовании мотиваций
- •13.8. Гомеостатическое и поведенческое регулирование температуры тела
- •13.9. Механизмы регуляции пищевого поведения
- •13.9.1. Поступление и усвоение пищи
- •13.9.2. Открытие центров голода и насыщения в гипоталамусе
- •13.9.3. Новые данные о центрах голода и насыщения
- •13.9.4. Факторы, определяющие пищевое поведение
- •13.10. Питьевое поведение
- •13.10.1. Обмен воды и солей в организме
- •13.10.2. Регуляция водно-солевого равновесия и питьевого поведения
- •13.11. Половое поведение
- •13.11.1. Критические периоды половой дифференцировки
- •13.11.2. Половые особенности когнитивной деятельности
- •13.11.3. Биологические основы сексуального поведения
- •14. Биологические мотивации
- •14.1. Потребности
- •14.2. Мотивации
- •14.3. Кибернетические принципы гомеостатического регулирования
- •14.4. Гипоталамус - важнейшая мотивационная структура мозга
- •14.5. Роль мезолимбической системы в формировании мотиваций
- •14.6. Роль миндалин в образовании мотиваций
- •14.7. Формирование мотивационной доминанты
- •14.8. Системная организация мотиваций
- •14.9. Физиологические механизмы целенаправленного поведения
- •14.10. Гомеостатическое и поведенческое регулирование температуры тела
- •14.11. Пищевое поведение
- •14.12. Питьевое поведение
- •14.13. Половое поведение
- •15. Нейрофизиологические основы эмоций
- •15.1. Управляемые и неуправляемые компоненты эмоций
- •15.2. Теория эмоций Джеймса-Ланге
- •15.3. Теория эмоций Кэннона-Барда
- •15.4. Лимбическая система мозга
- •15.5. Участие височной коры и миндалин в формировании эмоций
- •15.6. Участие лобной коры в формировании эмоций
- •15.7. Информационная теория эмоций
- •15.8. Функциональная специализация мозговых структур в образовании эмоций
- •15.9. Коммуникативная функция эмоций и выражение лица
- •15. 10. Вегетативные проявления эмоций и детектор лжи
- •15.11. Застойные эмоции и психоэмоциональный стресс
- •16. Нейрофизиологические основы регуляции цикла сна- бодрствования
- •16.1. Восстановительная теория сна
- •16.2. Циркадианная теория сна
- •16.3. Внешние проявления и фазы сна
- •Бдг десинхрони- атония, бдг, повышение около 80% высо-
- •16.4. Нейрофизиологические механизмы сна
- •16.5. Гуморальные индукторы сна
- •16.7. Нормальная продолжительность сна и последствия его лишения
- •16.8. Нарушения сна
- •16.9. Бодрствование и сознание
- •16.10. Различные уровни бодрствования
- •17. Нейронные основы памяти и научения
- •17.1. Врождённые и приобретённые механизмы поведения
- •17.2. Формы памяти и научения
- •17.3. Предполагаемое место хранения памяти
- •17.4. Молекулярные механизмы памяти
- •17.5. Синапсы Хебба
- •17.6. Нейрофизиологические механизмы габитуации и сенситизации
- •17.7. Нейронный механизм ассоциативного научения
- •17.8. Гиппокамп и образование памяти
- •17.9. Долговременная потенциация и память
- •17.10. Нарушения памяти
- •18. Речевые структуры мозга и функциональная асим метрия полушарий
- •18.1. Свойства языка
- •18.2. Языки животных
- •18.3. Расстройства речи - афазии
- •18.4. Модель Вернике-Гешвинда
- •18.5. Современная модель нейронных процессов, обеспечивающих речь
- •18.6. Происхождение и формирование речи человека
- •18. 7. Латерализация функций
- •18. 8. Расщеплённый мозг
- •18.9. Способы исследования латерализации функций
- •18.10. Современные представления о функциях полушарий мозга
18. 7. Латерализация функций
Каждый здоровый человек, решивший позагорать на речном берегу, легко определяет даже с закрытыми глазами, на какую часть его тела совершает посадку какое-нибудь назойливое насекомое. Если, например, он почувствует касание лапок на своей правой руке, то немедленно отмахнётся ею или прогонит непрошеного визитёра своей левой рукой. Обратим внимание на то, что сенсорная информация от тактильных или от болевых рецепторов кожи правой руки поступит для обработки в соответствующий участок левой постцентральной извилины благодаря перекрёсту проводящих путей. Движение этой руки произойдёт по команде, поступившей от моторной коры противоположного, левого полушария. Точно так же сенсорная и моторная деятельность левой половины тела регулируется правым полушарием. Симметрия обнаруживается и в том, что при односторонних повреждениях мозга нарушается чувствительность противоположной половины тела, и там же развивается паралич или парез - разные степени нарушения деятельности мышц.
При поражении левого полушария будет нарушена сенсорная и моторная функция справа, а при поражении правого полушария - слева. Но при поражении левого полушария у большинства людей нарушается ещё и речь, тогда как при поражениях правого полушария это случается очень редко: здесь симметрия уступает место асимметрии. Когда Поль Брока заявил, что "мы говорим с помощью левого полушария", многие вспомнили о существовании правшей и левшей, а поскольку у большинства людей, примерно у 90%, ведущей рукой является правая, а управляется она, как известно, левым полушарием; так почему бы ему не доминировать над правым и в управлении речью? А после открытия Вернике, после многих наблюдений клиницистов представление о "говорящем" левом полушарии и безмолвном правом легко укрепилось в сознании как большинства врачей, так и прочих смертных.
Правда долгое время оставалась непонятной и даже парадоксальной роль мозолистого тела - массивного пучка из примерно 200 миллионов нервных волокон, соединяющих оба полушария. Попытки исследовать его функцию посредством изучения последствий перерезки не приносили успеха: у подопытных животных не обнаруживалось никаких специфических проявлений в ответ на такое вмешательство. С другой стороны, было известно, что эпилептический приступ, начавшийся в одном полушарии, благодаря волокнам мозолистого тела вовлекает в этот процесс и другое. В 1940 году Уоррен Мак-Каллох (Mc Culloch W.) саркастически заметил по этому поводу: "единственная важная задача мозолистого тела состоит в том, чтобы помогать эпилептическому приступу переходить с одной стороны мозга на другую."
Таким образом, к середине ХХ века сложилось представление о том, что наряду с симметричным устройством мозга, существует и асимметричное представительство некоторых функций, выражающееся в преобладании одной руки, ноги, глаза, уха и полушария - по крайней мере в осуществлении важнейшей для человека речевой функции. И в то же время оставалось неясным: почему способные управляться со своими проблемами поодиночке полушария соединены таким большим количеством нервных волокон?