Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Мой курсовой.doc
Скачиваний:
7
Добавлен:
27.10.2018
Размер:
501.25 Кб
Скачать

Министерство образования и науки Российской Федерации

Федеральное агентство по образованию

Магнитогорский государственный технический университет им. Г. И. Носова

Кафедра: МОМЗ им. 50летия МГМИ

КУРСОВАЯ РАБОТА

по дисциплине «Надежность, эксплуатация и

техническое обслуживание металлургических машин».

Обработка статистической информации о надежности

линии привода 3-го формирующего ролика 1-й моталки

Разработал: ст.гр.КММа-10

Зырянов А.С.

Проверил: профессор.

Жиркин Ю.В.

Магнитогорск

2010

Содержание:

Обработка статистической информации о надежности

исследуемого объекта…………………………………………………………………...……….3

  1. Упорядочение исходной выборки наработок до отказа……………………………….3

  2. Проверка статистических гипотез………………………………………………………5

    1. Проверка статистической гипотезы о соответствии

экспоненциальному распределению……………………………………………….5

    1. Проверка статистической гипотезы о ее соответствии распределению

Вейбулла……………………………………………………………………………..7

    1. Проверка статистической гипотезы о соответствии нормальному или

логарифмически нормальному распределению…..................................................8

  1. Оценивание параметров распределений……………………………………………….9

    1. Аналитические методы получения точечных оценок…………………………….9

    2. Графическое оценивание параметров распределений…………………………..11

  2. Оценивание показателей безотказности………………………………………………14

  3. Восстановление работоспособного состояния………………………………………..16

Литература………………………………………………………………………………………18

Приложение……………………………………………………………………………………..19

Обработка статистической информации о надежности исследуемого объекта

Первое, что необходимо иметь - это документ, в котором зарегистрированы моменты отказов оборудования. Виды таких документов рассмотрены в первой главе пособия.

Такой документ будем называть первичной статистической совокупностью. Рассмотрение и осмысление такого документа затруднительно с целью представить себе характер распределения.

Первый шаг к осмыслению материала - это его упорядочение, расположение в порядке возрастания значений наработок. Полученный ряд будем называть упорядоченной статистической совокупностью. По упорядоченной статистической совокупности уже можно построить статистическую функцию распределения.

Характерной особенностью работ при проведении испытаний на надежность в процессе эксплуатации изделий является повышенная опасность грубых ошибок. Для статистической информации о надежности сравнительна высока вероятность попадания в выборку аномальных реализаций либо как результат ошибки, например в фиксации момента отказа, либо как результат ошибки при классификации отказов.

Исходные данные:

Вариант №4

Линия привода 3-го формирующего ролика 1-й моталки.

Наработки, сут.: 14,8,8,7,9,36,75,41,70,48,22,15,18,8,23,57.

  1. Упорядочение исходной выборки наработок до отказа

Упорядочим исходную выборку:

7,8,8,8,9,14,15,18,22,23,36,41,48,57,70,75

N=16 шт.

Проверка принадлежности необычайно малой или большой наработки к исходной выборке может быть осуществлена с помощью F-распределения для заданного уровня значимости и фактического числа наработок (табл.1 прил.) [1]

Если выполняется равенство

(1.1)

то наработка необычно малая и не должна приниматься во внимание.

Если выполняется равенство

(1.2)

то наработка необычно большая и ее следует отбросить,

где r – число наработок до отказа;

tmin – минимальное значение наработки;

tmax – максимальное значение наработки.

Процентили F-распределения находятся из табл. 1 прил. [1]

В соответствии с формулой (1.1) находим:

Из табл. 1 прил. для =0,05

Следовательно, наработка до отказа t1 = 7 сут. не является необычно малой и ее нельзя исключать из выборки.

По формуле (1.2) находим:

По табл. 1 прил. для =0,05 [1]

Вывод – наработка t = 75 сут. не является необычно большой и ее нельзя исключать из выборки.

  1. Проверка статистических гипотез

    1. Проверка статистической гипотезы о соответствии экспоненциальному распределению

Для проверки статистической гипотезы наиболее мощным является критерий Бартлетта:

, (2.1)

где - оценка средней наработки до отказа;

r – число наработок до отказа;

ti – значение i-той наработки.

Все вычисления сведем в таблицу:

Таблица 1

N

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

7

8

8

8

9

14

15

18

22

23

36

41

48

57

70

75

28,7

---

2

2,1

2,1

2,1

2,2

2,6

2,7

2,9

3,1

3,2

3,6

3,7

3,9

4

4,2

4,3

---

48,6

Выполняется условие:

;

где для заданного уровня значимости , числа отказов r находится из табл. 5 прил., следовательно гипотеза о принадлежности выборки к экспоненциальному распределению не отвергается.

Проверку можно осуществить и с помошью критерия Пирсона:

, (2.2)

где - теоретическая частота, - число интервалов.

Все вычисления сведем в таблицу:

Таблица 2

1-12

12-24

24-36

36-48

48-60

60-75

5

5

1

2

1

2

0.31

0,31

0,0625

0,125

0,0625

0,125

0.14

0,14

0,06

0,0077

0,06

0,0077

0,425

Число интервалов - .

Протяженность интервалов - .

Теоретическая частота -

Для и к-2=6-2=4 по табл.5 прил. находим -

Так как соблюдается неравенство:

,

то гипотеза о принадлежности выборки к генеральной совокупности, описываемой экспоненциальным распределением, не отвергается.