- •1. Первичные источнки электропитания
- •Обобщенная структурная схема системы эл. Снабжения
- •Источники бесперебойного питания (ибп).
- •Структурные схемы выпрямительных устройств.
- •Показатели эпу
- •1.5 Показатели вторичных источников
- •Магнитные материалы
- •Основная формула трансформаторной эдс
- •Управление индуктивностью
- •Потери в магнитопроводе
- •Классификация трансформаторов и их конструкции
- •Режим хх и кз трансформатора
- •Нагруженный режим работы трансформатора
- •Мощность трансформатора
- •Кпд трансформатора
- •Трёхфазные трансформаторы
- •Принципы выпрямления переменного тока
- •Вентиль и его характеристики
- •Схемы выпрямления
- •Расчётные соотношения в неуправляемых выпрямителях
- •Схемы пассивных сглаживающих фильтров и их характеристики
- •Индуктивный характер нагрузки выпрямителя
- •Емкостный характер нагрузки, схемы удвоения и умножения напряжения
- •Стабилизаторы. Классификация и параметры
- •Параметрические стабилизаторы тока и напряжения
- •Феррорезонансный и ферромагнитный параметрические стабилизаторы
- •Компенсационный стабилизатор (ксн). Основное уравнение стабилизатора
- •Принцип действия импульсных стабилизаторов. Их классификация
- •Функциональные схемы повышающего, понижающего и инвертирующего стабилизаторов.
- •Преобразователи напряжения. Классификация…
- •Однотактный преобразователь с прямым включением выпрямительного диода
- •Двухтактный преобразователь с самовозбуждением
- •Мостовой и полумостовой инверторы. Принцип действия, особенности работы
- •Корректор коэффициента мощности.
- •1.6 Примеры задач с решениями
- •2.6 Примеры задач с решениями
- •Примеры задач по выпрямителям с решениями
- •Определите среднее значение напряжения (постоянную составляющую) u0.
- •Пример 3.9.5
- •Из линейности внешней характеристики выпрямителя следует:
- •3.10 Примеры задач по сглаживающим фильтрам с решениями
- •Пример 3.10.4
- •Определите уровни токов и напряжений (расчёт по постоянному току рис. 3.62б и в момент коммутации). Изобразите ожидаемые диаграммы переходных процессов при периодической коммутации ключа к.
- •Пример 3.10.5 Исходные данные: Схемы пассивного (а) и активного (б) сглаживающих фильтров приведены на рисунке 3.64.
- •Примеры задач по стабилизаторам с решениями Пример 4.6.1
- •Падение напряжения на балластном резисторе:
- •Пример 4.6.7 Исходные данные: Для схемы мостового стабилизатора напряжения параметры используемых стабилитронов приведены на рисунке 4.34.
- •Определите коэффициент стабилизации по напряжению.
- •Пример 4.6.12
- •5.5 Примеры задач по преобразователям с решениями
1.6 Примеры задач с решениями
Пример 1.6.1
Исходные данные: Структурная схема выпрямительного устройства приведена на рисунке 1.27.

Рисунок 1.27 – Структурная схема выпрямительного устройства
Напряжение питания основного оборудования U0 = 48В, ток потребления от выпрямительного устройства I0 = 150 А, КПД выпрямительного устройства В = = 0,97 и коэффициент мощности cos В = 0,92; полная мощность технических потерь (освещение, охрана, защита) SХ =820 ВА; КПД трансформатора Т = 0,94 при коэффициенте мощности cos Т = 0,75.
Определите
полную
мощность трансформатора
;
потребляемый от сети (линии) ток
;
мощность компенсирующих устройств
для
обеспечения коэффициента мощности,
равного 0,95
и найдите
коэффициент снижения потерь
в
линии за счёт применения компенсирующих
устройств.
Решение.
Полная мощность на входе выпрямительного
устройства определяется через активные
мощности на выходе
и входе
:
,
,
.
Полная мощность трансформатора равна:
.
Ток, потребляемый от сети, определяется через полную мощность –

Мощность компенсирующих устройств, для обеспечения требуемого коэффициента мощности, рассчитывается по треугольнику мощностей (рисунок 1.28):

Рисунок 1.28 – Треугольник мощностей с учётом компенсации реактивной составляющей мощности

где
.
,
.
Таким образом, мощность компенсатора составляет 3,925 кВАр.
Линия
передачи имеет омическое сопротивление
R.
Потери в линии определяются квадратом
действующего тока
.
Следовательно, коэффициент
снижения потерь
в
линии за счёт применения компенсирующих
устройств определяется выражением:
,
где
Тогда

Пример 1.6.2
Исходные данные: Аккумуляторная батарея системы электропитания из 28 кислотных элементов в аварийном режиме отдала в нагрузку полную ёмкость.
Определите величину изменения напряжения на аккумуляторной батарее после аварии.
Решение. Полностью заряженный кислотный элемент аккумуляторной батареи имеет номинальное напряжение Uном=2 В. Элемент, отдавший полную ёмкость – Uкр=1,8В.
Тогда их разность в конце разряда будет составлять:
.
Пример 1.6.3
Исходные данные: В аварийном режиме работы системы электропитания аккумуляторная батарея с напряжением 48 В должна обеспечить ток нагрузки 100 А в течение 5 часов. Температура батареи + 22 0С.
Определите номинальную ёмкость батареи и выберите АБ для системы.
Решение. Номинальная ёмкость стационарной аккумуляторной батареи (С10) определяется по времени её разряда током десятичасового режима до конечного напряжения 1,8 В/эл. при средней температуре 20 °С. Если средняя температура отличается от 20 °С, то номинальное значение приводят к температуре 20 °С и фактическую ёмкость (Сф) находят по формуле [2]:
,
где
– температурный коэффициент ёмкости,
равный 0,006 [1/°С]– для режимов разряда
более часа и 0,01 [1/°С] – для режимов
разряда продолжительностью менее
одного часа; Т – фактическое значение
средней температуры электролита при
разряде, °С.
Номинальная ёмкость
батареи равна:
.
Тогда фактичая ёмкость –
.
Для примера, в таблице 1.5.1 приведены параметры некоторых типов аккумуляторов, используемых на предприятиях связи [24]. Из таблицы выбираем 24 аккумулятора типа 2VE540.
Пример 1.6.4
Исходные данные: Базовая станция сотовой связи типа RBS 2206 ERICSSON на двенадцать приёмопередатчиков по цепи постоянного тока потребляет мощность P0=2400Вт. Температура окружающей среды 18 0С.
Определите ток и потребляемую от сети мощность.
Решение. При нормальной работе буферной системы электропитания герметичные аккумуляторы находятся в режиме “плавающего” заряда с напряжением на одном элементе Uэл буф = 2,23 В. Базовая станция питается напряжением постоянного тока 48 В. Напряжение на выходе выпрямителя равно Uбуф=N∙Uэл буф = 24∙2,23 =53,52 (В), где N – число элементов в АБ (24 элемента с напряжением 2В). Тогда, потребляемый ток в буферном режиме Iбуф= P0 / Uбуф = 2400/53,52 = 44,84 (А). В аварийном режиме работы на одном элементе в конце разряда АБ Uэл.кр = 1,8 В и Uкр = N∙Uэл.кр = 24∙1,8 = 43,2 В. Следовательно, потребляемый ток в аварийном режиме – Iраз=P0/ Uкр =2400/43,2В=55,4 А.
Пусть время работы базовой станции от аккумуляторных батарей, равно tраз =4 ч.
Требуемая ёмкость
батареи :
.
Тогда фактическая ёмкость –
.
По таблице 1.5.1
выбираем 24 аккумулятора типа 2RG250.
Ток послеаварийного заряда батареи
.
Суммарное потребление от выпрямителей
в режиме послеаварийного заряда :
.
Мощность
потребления от сети (или ДГУ) в буферном
режиме (при КПД=0,9) равна
.
Мощность,
потребляемая батареей при заряде
.
Суммарная
мощность, потребляемая системой питания
в послеаварийном режиме:
.
Пример 1.6.5
Исходные данные: Напряжение питания оборудования U0 = 48В, мощность потребления от сети P1 = 2000 Вт.
Определите мощность потребления от резервного источника – ДГУ.
Решение. Мощность, потребляемая от ДГУ, определяется выражением [8]:
,
где q – допустимый мгновенный “наброс” нагрузки ( принимаем q = 1,0);
=
0,9 –
коэффициент полезного действия источника
бесперебойного питания;
Pзар
– мощность,
затрачиваемая
на заряд АБ:
;
m
– коэффициент
запаса, равный 1,1…1,4. Отсюда получаем:
,
.
