
- •1. Первичные источнки электропитания
- •Обобщенная структурная схема системы эл. Снабжения
- •Источники бесперебойного питания (ибп).
- •Структурные схемы выпрямительных устройств.
- •Показатели эпу
- •1.5 Показатели вторичных источников
- •Магнитные материалы
- •Основная формула трансформаторной эдс
- •Управление индуктивностью
- •Потери в магнитопроводе
- •Классификация трансформаторов и их конструкции
- •Режим хх и кз трансформатора
- •Нагруженный режим работы трансформатора
- •Мощность трансформатора
- •Кпд трансформатора
- •Трёхфазные трансформаторы
- •Принципы выпрямления переменного тока
- •Вентиль и его характеристики
- •Схемы выпрямления
- •Расчётные соотношения в неуправляемых выпрямителях
- •Схемы пассивных сглаживающих фильтров и их характеристики
- •Индуктивный характер нагрузки выпрямителя
- •Емкостный характер нагрузки, схемы удвоения и умножения напряжения
- •Стабилизаторы. Классификация и параметры
- •Параметрические стабилизаторы тока и напряжения
- •Феррорезонансный и ферромагнитный параметрические стабилизаторы
- •Компенсационный стабилизатор (ксн). Основное уравнение стабилизатора
- •Принцип действия импульсных стабилизаторов. Их классификация
- •Функциональные схемы повышающего, понижающего и инвертирующего стабилизаторов.
- •Преобразователи напряжения. Классификация…
- •Однотактный преобразователь с прямым включением выпрямительного диода
- •Двухтактный преобразователь с самовозбуждением
- •Мостовой и полумостовой инверторы. Принцип действия, особенности работы
- •Корректор коэффициента мощности.
- •1.6 Примеры задач с решениями
- •2.6 Примеры задач с решениями
- •Примеры задач по выпрямителям с решениями
- •Определите среднее значение напряжения (постоянную составляющую) u0.
- •Пример 3.9.5
- •Из линейности внешней характеристики выпрямителя следует:
- •3.10 Примеры задач по сглаживающим фильтрам с решениями
- •Пример 3.10.4
- •Определите уровни токов и напряжений (расчёт по постоянному току рис. 3.62б и в момент коммутации). Изобразите ожидаемые диаграммы переходных процессов при периодической коммутации ключа к.
- •Пример 3.10.5 Исходные данные: Схемы пассивного (а) и активного (б) сглаживающих фильтров приведены на рисунке 3.64.
- •Примеры задач по стабилизаторам с решениями Пример 4.6.1
- •Падение напряжения на балластном резисторе:
- •Пример 4.6.7 Исходные данные: Для схемы мостового стабилизатора напряжения параметры используемых стабилитронов приведены на рисунке 4.34.
- •Определите коэффициент стабилизации по напряжению.
- •Пример 4.6.12
- •5.5 Примеры задач по преобразователям с решениями
-
Мостовой и полумостовой инверторы. Принцип действия, особенности работы
К двухтактным относятся также мостовые и полумостовые схемы. На рис.5.9а приведена силовая цепь мостового инвертора, а на рис. 5.9б – диаграмма работы при активной нагрузке. Ключи работают попарно и поочерёдно (VT1, VT4 и VT2, VT3). Потери здесь больше, чем в обычной схеме, поскольку в цепи тока включены последовательно два ключа. Напряжение на закрытом ключе равно всего Eк, поэтому такая схема предпочтительна при высоких напряжениях питания. Форма напряжения на нагрузке и форма тока совпадают.
Рисунок 5.9 – Мостовой инвертор/ На практике нагрузка редко бывает активной, обычно она имеет индуктивный характер и ток в первичной обмотке не может измениться мгновенно.
В мостовых схемах инверторов имеется четыре управляемых ключа и довольно сложная схема управления. Уменьшить число ключей позволяет полумостовая схема инвертора, которая приведена на
Полумостовой инвертор
Здесь конденсаторы
С1 и
С2
создают искусственную среднюю точку
источника
.
При открытом VT1
С1
разряжается на нагрузку и подзаряжается
С2,
а при открытом VT2
– наоборот ( С2
разряжается на нагрузку и подзаряжается
С1).
Напряжение, прикладываемое к первичной
обмотке трансформатора равно напряжению
на одном конденсаторе.
-
Корректор коэффициента мощности.
Для повышения
в настоящее время используют пассивные
и активные корректоры коэффициента
мощности (ККМ).
Рисунок 6.1 – Упрощенная схема активного ККМ
На этом рисунке R1, R2 – датчик входного напряжения (ДН), R3 – датчик тока (ДТ). Индуктивность L, ключ VT1, диод VD1 и конденсатор С1 образуют импульсный повышающий стабилизатор напряжения. Работа ККМ поясняется эпюрами рис.6.1б. Замыкание транзистора VТ1 происходит в момент времени, когда напряжение на выходе датчика тока ДТ становится равным нулю (т. е. при нулевом токе в индуктивности L). Размыкание транзистора VТ1 происходит в момент времени, когда линейно нарастающее напряжение с датчика тока становится равным изменяющемуся по синусоидальному закону напряжению с датчика напряжения ДН. После размыкания транзистора ток в индуктивности начинает спадать, индуктивность разряжается на нагрузку через диод VD1, ДТ и сеть. При нулевом значении тока транзистор вновь замыкается. Далее процесс повторяется. Частота коммутации ключа превышает частоту сети и составляет десятки…сотни килогерц. Усредненный ток iср в индуктивности и потребляемый от сети, повторяет форму напряжения сети. По высокой частоте работы ключа сеть шунтируют конденсатором С2 (обычно это доли мкФ). Можно дополнительно ввести обратную связь по выходному напряжению и обеспечить предварительную стабилизацию. Очевидно, что работа ККМ возможна, если амплитуда входного напряжения меньше напряжения на конденсаторе С1 (с учётом отклонений). Для напряжения сети 220В (амплитуда 311В), выходное напряжение ККМ принимают равным 380…400В. Разновидности ККМ В рассмотренной выше схеме ККМ используется, так называемый, метод граничного управления. Он наиболее прост в реализации, но размыкание ключа производится при значительном токе, что связано с существенными потерями мощности.
Известны и другие методы управления ключом в ККМ 1. управление по пиковому значению тока 2. метод разрывных токов с ШИМ. 3.управление по среднему значению тока.