
- •1.1 Характеристика диапазона электромагнитных волн для оптической связи
- •1.2 Характеристика физических сред для передачи оптических сигналов
- •Устранение “водяного” пика
- •1.3 Характеристики материалов для изготовления источников и приемников оптического излучения и волноводов
- •1.4 Структурная схема оптической системы передачи
- •2.1 Мультиплексирование плезиохронное pdh
- •2.2 Мультиплексирование синхронное sdh
- •2.3 Мультиплексирование асинхронное atm
- •2.4 Мультиплексирование отн
- •2.5 Мультиплексирование Ethernet
- •2.5.1 Ethernet стандарта EoT itu-t g.8010 в оптической системе передачи
- •2.5.2 Схемы мультиплексирования Ethernet
- •3.1 Требования к излучателям
- •3.2 Светоизлучающие диоды. Конструкции, принцип действия, основные электрические и оптические характеристики
- •3.2.1 Конструкции светодиодов для оптической связи
- •3.2.2 Принцип действия светодиодов
- •3.2.3 Основные характеристики светодиодов
- •3.3 Лазеры. Конструкции, принцип действия, основные электрические и оптические характеристики
- •3.3.1 Определение лазера
- •3.3.2 Определение резонатора для лазера
- •3.3.3 Конструкции и принцип действия полупроводниковых лазеров
- •3.3.4 Классы лазерных устройств для систем оптической связи
- •3.4 Согласование источников оптического излучения с физическими средами
- •3.4.1 Соединение источника с волокном
- •3.4.2 Линзовые соединения
- •3.4.3 Вывод излучения в атмосферу
- •3.4.4 Перестройка частоты излучения лазера
- •4.1. Определение модуляции и классификация видов
- •4.2. Прямая модуляция
- •4.2.1 Модуляционные характеристики светоизлучающего диода
- •4.2.2 Модуляционные характеристики полупроводникового лазера
- •4.2.3 Шумы модуляции лазера
- •4.2.4 Схемотехнические решения для прямой модуляции излучения сид и ппл
- •4.2.5 Светодиодные, лазерные и интегральные передающие оптические модули
- •4.3. Внешняя модуляция оптического излучения
- •4.3.1 Электрооптическая модуляция
- •4.3.2 Электроабсорбционная модуляция
- •4.3.3 Модулятор Маха – Зендера
- •4.3.4 Акустооптическая модуляция
- •4.4. Сравнительная характеристика прямой и внешней модуляции
- •5.1 Определение фотодетектора. Виды фотодетекторов. Требования к фотодетекторам
- •5.2 Фотодиоды конструкции p-I-n. Принцип действия, основные характеристики
- •5.3 Лавинный фотодиод. Конструкция, принцип действия, основные характеристики. Преимущества лфд
- •5.4 Фотодиоды конструкции tap
- •5.5 Шумы фотодиодов. Эквивалентная шумовая схема фотодиода
- •6.1 Методы фотодетектирования (прямое детектирование и детектирование с преобразованем). Требования к фотоприемным устройствам
- •6.2 Фотоприемные устройства с прямым детектированием
- •6.3 Фотоприемные устройства детектирования с преобразованием
- •6.4 Усилители фотоприемных устройств. Электрическая и оптическая полоса пропускания
- •6.5 Оценка соотношения сигнал/шум на выходе фотоприемного устройства
- •6.6 Особенности построения фотоприёмных устройств при использовании модуляции nrz-dpsk
- •7.1 Принцип оптического усиления. Классификация и назначение усилителей
- •7.2. Полупроводниковые оптические усилители. Конструкции, принцип действия, основные характеристики
- •7.3 Волоконно-оптические усилители на основе редкоземельных элементов. Конструкция, принцип действия, основные характеристики
- •7.4 Оптические усилители на основе эффекта рассеяния
- •8.1 Способы построения линейных трактов оптических систем передачи
- •8.2 Требования к линейным сигналам одноволновых оптических систем передачи
- •8.3 Линейные коды оптических систем передачи. Классификация кодов и их характеристики
- •8.4 Алгоритмы формирования сигналов в линейных кодах восп
- •8.4.1 Алгоритм формирования скремблированного линейного сигнала
- •8.4.2 Алгоритмы формирования линейных сигналов в классе кодов 1в2в
- •8.4.3.Алгоритмы формирования линейных сигналов в классе кодов nBmB
- •8.5 Проектирование линейных одноволновых трактов восп. Ограничения длины регенерационного участка
- •8.6 Требования к линейным трактам систем с многоволновой передачей
- •8.7 Проектирование линейных трактов многоволновой передачи. Ограничение длины участка регенерации и ретрансляции
- •8.9 Упреждающая коррекция ошибок в оптических системах передачи
- •9.1 Оптические разъемные соединители (коннекторы)
- •9.2 Соединительные розетки и адаптеры
- •9.3 Оптические аттенюаторы
- •9.4 Оптические кроссы
- •9.5 Оптические ответвители (разветвители)
- •9.6 Оптические изоляторы (вентили)
- •9.7 Оптические фильтры, мультиплексоры и демультиплексоры
- •9.8 Оптические циркуляторы
- •9.9 Компенсаторы дисперсии
- •9.10 Преобразователи длин волн
- •9.11 Оптические коммутаторы и маршрутизаторы
- •9.12 Фотонные кристаллы
- •10.1 Определение оптического солитона
- •10.2 Нелинейные оптические эффекты в стекловолокне и существование солитонов
- •10.3 Принципы построения солитонных волоконно-оптических систем передачи
9.3 Оптические аттенюаторы
Оптические аттенюаторы применяются с целью уменьшения мощности оптического сигнала. Существует несколько разновидностей аттенюаторов.
Переменные аттенюаторы – розетки (рисунок 9.8) имеют присоединительные размеры стандартных проходных розеток типа ST и FC и взаимозаменяемы с ними. Аттенюаторы допускают плавную регулировку величины затухания за счет изменения воздушного зазора. Точность установки 0,5 дБ. Диапазон плавной регулировки ST и FC: 0 ¸ 15 дБ для многомодового применения, 0 ¸ 20 дБ для одномодового применения. Переменный аттенюатор FC/APC разработан на базе стандартного аттенюатора FC и отличается более высокой точностью установки и большей величиной затухания (0 ¸ 30 дБ).
Рисунок 9.8 Переменные аттенюаторы-розетки
Фиксированные аттенюаторы-розетки (рисунок 9.9) имеют присоединительные размеры и внешний вид стандартных проходных розеток ST, FC. Затухание определяется калиброванным воздушным зазором. Типовые значения затуханий: 5, 10, 15, 20, 25, 30 дБ.
Рисунок 9.9 Фиксированные аттенюаторы-розетки
Аттенюаторы – FM адаптеры используются в измерительной и телекоммуникационной аппаратуре для оперативного снижения уровня сигнала. Типовые значения затуханий: 5, 10, 15, 20 дБ.Переменные аттенюаторы – FM адаптеры имеют внешний вид стандартных FM адаптеров, однако, отличаются наличием регулировочной гайки и стопорного кольца. Регулировка затухания осуществляется за счет воздушного зазора. Используются в качестве подстроечных. Величина затухания 0 20 дБ. Точность установки 0,5 дБ.
9.4 Оптические кроссы
Оптические кроссы используются для коммутации многоволоконного оптического кабеля, соединительных шнуров и электронного оборудования. Оптические кроссы делятся на настенные, стоечные и поддонные (рэковые). Корпус кросса представляет собой коробку или шкаф.
Настенные кроссы (пример на рисунке 9.10) различаются числом розеточных портов: 8, 12, 16, 32. В розеточные порты вставляются розетки FC, ST, SC или дуплексные розетки SC.
Рисунок
9.10 Настенный кросс
Стоечные кроссы различаются способом установки (к стене или в ряд с оборудованием) и числом розеток (до 80).
Кроссы в виде поддонов (называемые рэковыми) имеют три варианта исполнения – 1U, 2U, 3U – и рассчитаны на 16, 32 и 48 розеток. Эти кроссы лучше защищены от пыли.
9.5 Оптические ответвители (разветвители)
Оптический разветвитель представляет собой многополюсное устройство, в котором излучение, подаваемое на часть входных оптических полюсов, распределяется между его остальными оптическими полюсами.
Различают следующие виды разветвителей: однонаправленные, двунаправленные, чувствительные к длине волны (частотнозависимые) и нечувствительные к длине волны (частотнонезависимые). В двунаправленном разветвителе каждый полюс может работать на прием и на передачу или осуществляет прием и передачу одновременно.
Частотнонезависимые разветвители подразделяются на звездообразные, древовидные и ответвители.
Звездообразные разветвители обычно имеют одинаковое число входных и выходных полюсов. Оптический сигнал приходит на один из n входов и в равной степени распределяется между n выходными полюсами. Большое распространение получили разветвители 2´ 2 и 4´ 4. Распределение мощности происходит равномерно.
Древовидные разветвители расщепляют входной оптический сигнал на несколько выходных, или наоборот, объединяют несколько сигналов в один выходной. Распределение мощности от одного входа к n выходам равномерное. Нашли применение разветвители от 2 до 32 и более выходов (рисунок 9.11).
Рисунок 9.11 Пример использования разветвителей в пассивной оптической сети
Ответвитель отличается неравномерным распределением мощности от одного входа к n выходам.
Частотнозависимые разветвители могут использоваться в качестве устройств многоволнового мультиплексирования WDM. С их помощью можно объединять и разделять сигналы различных длин волн.
Примеры характеристик некоторых широко применяемых разветвителей приведены в таблице 9.2.
Таблица 9.2 Оптические двухоконные разветвители (1310±40 нм, 1550±40 нм)
Номер |
Тип |
Коэффициент деления, % |
Максимальные вносимые потери, дБ |
Типичные вносимые потери, дБ |
2000 |
1×2 |
50/50 |
3.7/3.7 |
3.1/3.1 |
2200 |
1×2 |
60/40 |
2.7/4.7 |
2.3/4.1 |
2400 |
1×2 |
70/30 |
2.0/6.0 |
1.7/5.4 |
2600 |
1×2 |
80/20 |
1.3/7.8 |
1.1/7.1 |
2800 |
1×2 |
90/10 |
0.8/11.2 |
0.6/10.2 |
2900 |
1×2 |
95/5 |
0.5/14.4 |
0.4/13.2 |
2030 |
2×2 |
50/50 |
3.7/3.7 |
3.1/3.1 |
3900 |
1×3 |
33/33/33 |
5.9/5.9/5.9 |
5/5/5 |
4900 |
1×4 |
25/25/25/25 |
7.4/7.4/7.4/7.4 |
6.2/6.2/6.2/6.2 |
5300 |
1×5 |
20/…../20 |
8.6/…./8.6 |
7.3/…./7.3 |
6000 |
1×6 |
16.6/…../16.6 |
9.8/…./9.8 |
8.1/…./8.1 |
8000 |
1×8 |
12.5/…./12.5 |
11.3/…/11.3 |
9.5/…./9.5 |
А110 |
1×10 |
10/…./10 |
12.1/…./12.1 |
10.4/…./10.4 |
С112 |
1×12 |
8.3/…./8.3 |
13.3/…./13.3 |
11.3/…./11.3 |
G116 |
1×16 |
6.25/…/6.25 |
14.9/…/14.9 |
12.6/…./12.6 |
M132 |
1×32 |
3.13/…/3.13 |
18.5/…/18.5 |
15.8/…./15.8 |