
- •1.1 Характеристика диапазона электромагнитных волн для оптической связи
- •1.2 Характеристика физических сред для передачи оптических сигналов
- •Устранение “водяного” пика
- •1.3 Характеристики материалов для изготовления источников и приемников оптического излучения и волноводов
- •1.4 Структурная схема оптической системы передачи
- •2.1 Мультиплексирование плезиохронное pdh
- •2.2 Мультиплексирование синхронное sdh
- •2.3 Мультиплексирование асинхронное atm
- •2.4 Мультиплексирование отн
- •2.5 Мультиплексирование Ethernet
- •2.5.1 Ethernet стандарта EoT itu-t g.8010 в оптической системе передачи
- •2.5.2 Схемы мультиплексирования Ethernet
- •3.1 Требования к излучателям
- •3.2 Светоизлучающие диоды. Конструкции, принцип действия, основные электрические и оптические характеристики
- •3.2.1 Конструкции светодиодов для оптической связи
- •3.2.2 Принцип действия светодиодов
- •3.2.3 Основные характеристики светодиодов
- •3.3 Лазеры. Конструкции, принцип действия, основные электрические и оптические характеристики
- •3.3.1 Определение лазера
- •3.3.2 Определение резонатора для лазера
- •3.3.3 Конструкции и принцип действия полупроводниковых лазеров
- •3.3.4 Классы лазерных устройств для систем оптической связи
- •3.4 Согласование источников оптического излучения с физическими средами
- •3.4.1 Соединение источника с волокном
- •3.4.2 Линзовые соединения
- •3.4.3 Вывод излучения в атмосферу
- •3.4.4 Перестройка частоты излучения лазера
- •4.1. Определение модуляции и классификация видов
- •4.2. Прямая модуляция
- •4.2.1 Модуляционные характеристики светоизлучающего диода
- •4.2.2 Модуляционные характеристики полупроводникового лазера
- •4.2.3 Шумы модуляции лазера
- •4.2.4 Схемотехнические решения для прямой модуляции излучения сид и ппл
- •4.2.5 Светодиодные, лазерные и интегральные передающие оптические модули
- •4.3. Внешняя модуляция оптического излучения
- •4.3.1 Электрооптическая модуляция
- •4.3.2 Электроабсорбционная модуляция
- •4.3.3 Модулятор Маха – Зендера
- •4.3.4 Акустооптическая модуляция
- •4.4. Сравнительная характеристика прямой и внешней модуляции
- •5.1 Определение фотодетектора. Виды фотодетекторов. Требования к фотодетекторам
- •5.2 Фотодиоды конструкции p-I-n. Принцип действия, основные характеристики
- •5.3 Лавинный фотодиод. Конструкция, принцип действия, основные характеристики. Преимущества лфд
- •5.4 Фотодиоды конструкции tap
- •5.5 Шумы фотодиодов. Эквивалентная шумовая схема фотодиода
- •6.1 Методы фотодетектирования (прямое детектирование и детектирование с преобразованем). Требования к фотоприемным устройствам
- •6.2 Фотоприемные устройства с прямым детектированием
- •6.3 Фотоприемные устройства детектирования с преобразованием
- •6.4 Усилители фотоприемных устройств. Электрическая и оптическая полоса пропускания
- •6.5 Оценка соотношения сигнал/шум на выходе фотоприемного устройства
- •6.6 Особенности построения фотоприёмных устройств при использовании модуляции nrz-dpsk
- •7.1 Принцип оптического усиления. Классификация и назначение усилителей
- •7.2. Полупроводниковые оптические усилители. Конструкции, принцип действия, основные характеристики
- •7.3 Волоконно-оптические усилители на основе редкоземельных элементов. Конструкция, принцип действия, основные характеристики
- •7.4 Оптические усилители на основе эффекта рассеяния
- •8.1 Способы построения линейных трактов оптических систем передачи
- •8.2 Требования к линейным сигналам одноволновых оптических систем передачи
- •8.3 Линейные коды оптических систем передачи. Классификация кодов и их характеристики
- •8.4 Алгоритмы формирования сигналов в линейных кодах восп
- •8.4.1 Алгоритм формирования скремблированного линейного сигнала
- •8.4.2 Алгоритмы формирования линейных сигналов в классе кодов 1в2в
- •8.4.3.Алгоритмы формирования линейных сигналов в классе кодов nBmB
- •8.5 Проектирование линейных одноволновых трактов восп. Ограничения длины регенерационного участка
- •8.6 Требования к линейным трактам систем с многоволновой передачей
- •8.7 Проектирование линейных трактов многоволновой передачи. Ограничение длины участка регенерации и ретрансляции
- •8.9 Упреждающая коррекция ошибок в оптических системах передачи
- •9.1 Оптические разъемные соединители (коннекторы)
- •9.2 Соединительные розетки и адаптеры
- •9.3 Оптические аттенюаторы
- •9.4 Оптические кроссы
- •9.5 Оптические ответвители (разветвители)
- •9.6 Оптические изоляторы (вентили)
- •9.7 Оптические фильтры, мультиплексоры и демультиплексоры
- •9.8 Оптические циркуляторы
- •9.9 Компенсаторы дисперсии
- •9.10 Преобразователи длин волн
- •9.11 Оптические коммутаторы и маршрутизаторы
- •9.12 Фотонные кристаллы
- •10.1 Определение оптического солитона
- •10.2 Нелинейные оптические эффекты в стекловолокне и существование солитонов
- •10.3 Принципы построения солитонных волоконно-оптических систем передачи
4.2.3 Шумы модуляции лазера
Шумы, возникающие при модуляции тока накачки лазера, подразделяются:
-
шумы, обусловленные спонтанным излучением;
-
шумы, обусловленные изменением температуры и тока (дробовый шум);
-
шумы, обусловленные отраженным излучением от стыка с оптическим волокном;
-
шумы перескока моды;
-
шумы частотной модуляции.
Шумы спонтанного излучения присутствуют во всех без исключения полупроводниковых лазерах. Они обусловлены флуктуациями коэффициента усиления в активном слое из-за флуктуаций спонтанного излучения. При этом максимум шума может быть распределен в частотном интервале от 1 ГГц до 100 ГГц.
Шумы изменения температуры и тока накачки – обусловлены изменением смещения из-за изменения температуры и модулирующих составляющих тока накачки. Сказывается влияние частот ниже 10 МГц.
Шумы отражения оптического сигнала от стыка с поверхностью световода связаны с возвратом отраженного света, который имеет произвольную фазу. При этом изменяются условия генерации, которые приводят к изменению резонансной длины волны, числа генерируемых мод, изменению формы ватт-амперной характеристики и т.д. Для борьбы с шумами отражения используются оптические изоляторы [6, 10].
Шумы перескока моды возникают из-за малого спектрального расстояния между модами. При ширине спектра моды около 1-2 нм расстояние между модами составляет около 0,8 нм. По этой причине и недостаточно высокой добротности резонатора в процессе модуляции возникают возможности генерации лазера на соседних модах. Перескок моды приводит к значительным колебаниям мощности излучения лазера. Для устранения шумов перескока применяется режим с высоким смещением (около или выше порогового тока). Лазеры типа РОС благодаря регулировке не имеют перескока мод.
Шумы частотной модуляции сходны по природе с шумами мод, обусловленными флуктуациями спонтанного излучения, колебаниями температуры, электрического тока, обратным светом, перескоком моды. Эффективным средством борьбы с шумом модуляции лазера считается отрицательная обратная связь с широкой полосой частот.
4.2.4 Схемотехнические решения для прямой модуляции излучения сид и ппл
Простейшая схема (рисунок 4.12) применяется для модуляции СИД. Схема требует больших токов включения источника сигнала. В схеме могут возникать большие искажения информационного сигнала. В схеме сложно выполнить предварительное смещение.
Рисунок 4.12 Простейшая схема модулятора
Схема модулятора с логическим затвором и предварительным смещением (рисунок 4.13) позволяет обеспечить высокие скорости передачи сигналов с двумя уровнями передачи.
Транзистор VT1 с резистором R образуют логический затвор, который управляется информационным сигналом.
Рисунок 4.13 Схема модулятора с логическим затвором
Стабилизирующая схема модулятора с обратной связью позволяет обеспечить высокую линейность модуляции, что чрезвычайно необходимо для сигналов, чувствительных к нелинейным искажениям (рисунок 4.14). Схема стабилизирует излучение ППЛ.
Рисунок 4.14 Стабилизирующая схема модуляции с обратной связью
Небольшая часть выходной мощности захватывается местным фотодиодом (ФД), совмещенным с ППЛ, преобразуется в фототок, ток усиливается и сравнивается с током информационного сигнала. Отклонение мощности излучения компенсируется изменением тока накачки.
Рассмотренные схемы модуляторов могут входить в состав передающих оптических модулей, которые представлены двумя видами [28, 68]: светодиодными или лазерными модулями и интегрированными передающими модулями.