
- •1.1 Характеристика диапазона электромагнитных волн для оптической связи
- •1.2 Характеристика физических сред для передачи оптических сигналов
- •Устранение “водяного” пика
- •1.3 Характеристики материалов для изготовления источников и приемников оптического излучения и волноводов
- •1.4 Структурная схема оптической системы передачи
- •2.1 Мультиплексирование плезиохронное pdh
- •2.2 Мультиплексирование синхронное sdh
- •2.3 Мультиплексирование асинхронное atm
- •2.4 Мультиплексирование отн
- •2.5 Мультиплексирование Ethernet
- •2.5.1 Ethernet стандарта EoT itu-t g.8010 в оптической системе передачи
- •2.5.2 Схемы мультиплексирования Ethernet
- •3.1 Требования к излучателям
- •3.2 Светоизлучающие диоды. Конструкции, принцип действия, основные электрические и оптические характеристики
- •3.2.1 Конструкции светодиодов для оптической связи
- •3.2.2 Принцип действия светодиодов
- •3.2.3 Основные характеристики светодиодов
- •3.3 Лазеры. Конструкции, принцип действия, основные электрические и оптические характеристики
- •3.3.1 Определение лазера
- •3.3.2 Определение резонатора для лазера
- •3.3.3 Конструкции и принцип действия полупроводниковых лазеров
- •3.3.4 Классы лазерных устройств для систем оптической связи
- •3.4 Согласование источников оптического излучения с физическими средами
- •3.4.1 Соединение источника с волокном
- •3.4.2 Линзовые соединения
- •3.4.3 Вывод излучения в атмосферу
- •3.4.4 Перестройка частоты излучения лазера
- •4.1. Определение модуляции и классификация видов
- •4.2. Прямая модуляция
- •4.2.1 Модуляционные характеристики светоизлучающего диода
- •4.2.2 Модуляционные характеристики полупроводникового лазера
- •4.2.3 Шумы модуляции лазера
- •4.2.4 Схемотехнические решения для прямой модуляции излучения сид и ппл
- •4.2.5 Светодиодные, лазерные и интегральные передающие оптические модули
- •4.3. Внешняя модуляция оптического излучения
- •4.3.1 Электрооптическая модуляция
- •4.3.2 Электроабсорбционная модуляция
- •4.3.3 Модулятор Маха – Зендера
- •4.3.4 Акустооптическая модуляция
- •4.4. Сравнительная характеристика прямой и внешней модуляции
- •5.1 Определение фотодетектора. Виды фотодетекторов. Требования к фотодетекторам
- •5.2 Фотодиоды конструкции p-I-n. Принцип действия, основные характеристики
- •5.3 Лавинный фотодиод. Конструкция, принцип действия, основные характеристики. Преимущества лфд
- •5.4 Фотодиоды конструкции tap
- •5.5 Шумы фотодиодов. Эквивалентная шумовая схема фотодиода
- •6.1 Методы фотодетектирования (прямое детектирование и детектирование с преобразованем). Требования к фотоприемным устройствам
- •6.2 Фотоприемные устройства с прямым детектированием
- •6.3 Фотоприемные устройства детектирования с преобразованием
- •6.4 Усилители фотоприемных устройств. Электрическая и оптическая полоса пропускания
- •6.5 Оценка соотношения сигнал/шум на выходе фотоприемного устройства
- •6.6 Особенности построения фотоприёмных устройств при использовании модуляции nrz-dpsk
- •7.1 Принцип оптического усиления. Классификация и назначение усилителей
- •7.2. Полупроводниковые оптические усилители. Конструкции, принцип действия, основные характеристики
- •7.3 Волоконно-оптические усилители на основе редкоземельных элементов. Конструкция, принцип действия, основные характеристики
- •7.4 Оптические усилители на основе эффекта рассеяния
- •8.1 Способы построения линейных трактов оптических систем передачи
- •8.2 Требования к линейным сигналам одноволновых оптических систем передачи
- •8.3 Линейные коды оптических систем передачи. Классификация кодов и их характеристики
- •8.4 Алгоритмы формирования сигналов в линейных кодах восп
- •8.4.1 Алгоритм формирования скремблированного линейного сигнала
- •8.4.2 Алгоритмы формирования линейных сигналов в классе кодов 1в2в
- •8.4.3.Алгоритмы формирования линейных сигналов в классе кодов nBmB
- •8.5 Проектирование линейных одноволновых трактов восп. Ограничения длины регенерационного участка
- •8.6 Требования к линейным трактам систем с многоволновой передачей
- •8.7 Проектирование линейных трактов многоволновой передачи. Ограничение длины участка регенерации и ретрансляции
- •8.9 Упреждающая коррекция ошибок в оптических системах передачи
- •9.1 Оптические разъемные соединители (коннекторы)
- •9.2 Соединительные розетки и адаптеры
- •9.3 Оптические аттенюаторы
- •9.4 Оптические кроссы
- •9.5 Оптические ответвители (разветвители)
- •9.6 Оптические изоляторы (вентили)
- •9.7 Оптические фильтры, мультиплексоры и демультиплексоры
- •9.8 Оптические циркуляторы
- •9.9 Компенсаторы дисперсии
- •9.10 Преобразователи длин волн
- •9.11 Оптические коммутаторы и маршрутизаторы
- •9.12 Фотонные кристаллы
- •10.1 Определение оптического солитона
- •10.2 Нелинейные оптические эффекты в стекловолокне и существование солитонов
- •10.3 Принципы построения солитонных волоконно-оптических систем передачи
3.4.2 Линзовые соединения
На рисунках 3.19 – 3.22 представлены различные линзовые соединители [6, 8], которые согласуют световоды и излучатели.
Рисунок 3.19 Согласование линзой на световоде
Рисунок 3.20 Согласование линзой на излучателе
Рисунок 3.21 Согласование градановой линзой
Приведенные на рисунках примеры линзовых соединителей (микролинз, торцевых линз, граданов) не исчерпывают все возможные способы [2, 3, 8].
3.4.3 Вывод излучения в атмосферу
В открытых (атмосферных) оптических системах связи основная сложность состоит в изменчивости атмосферной прозрачности и рефракции оптического луча. Таким образом, осуществить строгую фокусировку луча от передатчика к приемнику не представляется возможным. Для того, чтобы получить максимальную мощность в приемном устройстве, необходимо учесть не только направленные свойства источника излучения (лазера, светодиода), но и апертуру приемника, дифракционные искажения при выводе излучения в атмосферу, рефракцию и поглощение в атмосфере и согласующих устройствах. В плоскости приемной апертуры должно формироваться изображение излучаемой мощности от передатчика. Для этого используется система расширения светового коллимированного пучка (рисунок 3.22). Это уменьшает расходимость, обусловленную дифракцией света.
Рисунок
3.22 Расширитель пучка, используемый для
уменьшения его расходимости
Благодаря расширителю пучка получены угловые расходимости лазерного излучения в пределах 0,5 3 0,1 мрад при мощности передатчика от 10 до 45 мВт и дальности передачи от 0,5 до 5 км [80].
Для расчета максимального затухания атмосферного канала с учетом угловой расходимости излучения применимо соотношение 3.27 [114].
Аатмос. кан.=10lg(Pпер×D2прием. ант./Pприем. миним×φ2×L 2атмос.кан.) (3.27)
Где Pпер – мощность на выходе передающей антенны, Dприем.ант. -диаметр приемной антенны, Pприем.миним.- минимальная мощность на входе приемной антенны, φ – угол расходимости излучения, Lатмос.кан. – длина атмосферного канала.
Если расходимость пучка света мала, например, не превышает 0,1 мрад, то требуемая точность наведения будет предъявлять жесткие требования к системе управления лучом и механической стабильности передатчика и приемника.
3.4.4 Перестройка частоты излучения лазера
В системах многоволновой передачи (DWDM), кроме лазеров с фиксированными частотами генерации, часто необходимы перестраиваемые лазеры. Такие лазеры необходимы для коммутации и управления оптическими потоками в оптических сетях. Также перестройка лазеров необходима для тестовых операций элементов систем DWDM. При этом важнейшей характеристикой перестройки лазера является скорость перестройки, которая должна измеряться наносекундами в одних случаях (переключение нагрузки с оптического канала на оптический канал) и в других случаях секунды, когда происходит тестирование каналов DWDM.
Широкое применение получили перестраиваемые лазеры с внешними резонаторами Фабри-Перо, дифракционными брэгговскими решетками, плоскими отражательными дифракционными решетками, встроенным управляемым воздушным резонатором и другие. В таблице 3.3 приведены примеры характеристик перестраиваемых лазеров.
Таблица 3.3 Характеристики перестраиваемых лазеров
Тип источника |
Производитель |
Спектральный диапазон, нм |
Точность, нм |
LPB |
Tektronix |
1290 - 1570 |
0.01 |
FLS-2600 |
Exfo |
1520 - 1570 |
0.01 |
81554SM |
Agilent |
1290 - 1330 |
0.01 |
81640A |
Agilent |
1500 - 1640 |
0.015 |
TQ8111 |
ADVANTEST |
400 - 1600 |
0.01 |
Подробную информацию о перестраиваемых лазерах можно найти в [36].
4. Модуляция излучения источников электромагнитных волн оптического диапазона |
|
|