
- •Технические средства контроля в системах управления технологическими процессами
- •Технические средства контроля в системах управления технологическими процессами Учебное пособие
- •1. Контроль давления
- •1.1. Определение понятия «давление», и соотношение между единицами давления
- •1.2. Классификация приборов для измерения давления по виду измеряемого давления
- •1.3. Классификация приборов для измерения давления по принципу действия
- •1.4. Классификация пружинных приборов для измерения давления по типу чувствительного элемента
- •1.5. Понятие «поверка» рабочего измерительного прибора
- •1.6. Классификация погрешностей измерения
- •1.6.1. Случайная погрешность
- •1.6.2. Систематическая погрешность
- •1.7. Абсолютная, относительная, приведённая погрешности измерительного прибора. Вариация показаний прибора
- •1.8. Класс точности приборов
- •1.9. Устройство, принцип действия и область применения приборов с упругими чувствительными элементами
- •1.10. Возможные источники систематических погрешностей приборов с упругим чувствительным элементом
- •1.11. Устройство и принцип действия грузопоршневого манометра мп -60
- •1.12. Устройство и принцип действия датчика давления «Сапфир-22 ди»
- •2. Контроль температуры
- •2.1. Термоэлектрические преобразователи
- •2.1.1. Принцип измерения температуры термоэлектрическим методом. Конструкция термопары
- •2.1.2. Типы стандартных термопар и диапазоны изменяемых температур для каждого их вида
- •2.1.3. Термопреобразователи с унифицированным токовым выходным сигналом. (тхау)
- •2.1.4. Применение термоэлектродных проводов и их свойства
- •2.1.5. Измерительные приборы применяемые комплексно с термопарами для измерения температуры
- •2.1.6. Принцип действия магнитоэлектрического милливольтметра
- •2.1.7. Схема, исключающая, влияние отклонений температуры свободного спая термопары на показания милливольтметра, электронного потенциометра
- •2.1.8. Сущность нулевого (компенсационного) метода измерения тэдс
- •2.1.9. Назначение всех элементов электронной функциональной схемы автоматического потенциометра
- •2.2. Термопреобразователи сопротивления.
- •2.2.1. Принцип работы термопреобразователя сопротивления
- •2.2.3. Отличие терморезисторов от металлических термопреобразователей сопротивления
- •2.2.5. Измерительные приборы, применяемые в комплекте с термопреобразователями сопротивления
- •2.2.6. Уравновешенные мосты
- •2.2.7. Преимущества трехпроводной схемы подсоединения термопреобразователя сопротивления
- •2.2.8. Автоматический уравновешенный мост. Назначение основных элементов схемы. Принцип работы прибора.
- •2.2.9. Неуравновешенные мосты.
- •3. Контроль расхода
- •3.1.Физический смысл понятий «расход» и «количество»
- •3.2. Приборы для измерения расхода и количества вещества
- •3.3. Основные принципы измерения расхода
- •3.4. Классификация приборов для измерения расхода и количества.
- •3.5. Градуировочная характеристика средств измерения
- •3.6. Сущность измерения расхода по методу переменного перепада давления
- •3.6.1. Типы сужающих устройств, регламентированные рд 50-213-80
- •3.6.2. Схема установки для определения расхода воды методом переменного перепада давлений
- •3.6.3. Источники возможных погрешностей комплекта – расходомера при измерении расхода методом переменного перепада давлений
- •3.7.2. Схема установки для определения расхода посредством расходомера постоянного перепада давления и его градуировки.
- •3.8. Кориолисовы (массовые) расходомеры.
- •4. Контроль уровня
- •4.1. Методы измерения уровня жидкости, применяемые в химической промышленности
- •4.2. Принцип работы гидростатического уровнемера. Дифманометр типа дм
- •4.3. Принцип работы емкостного уровнемера
- •4.5. Радарные измерители уровня
- •Библиографический список
- •Печатается в авторской редакции
4.3. Принцип работы емкостного уровнемера
Принципиальная схема емкостного уровнемера показана на рис. 2. В сосуд с жидкостью 1, уровень которой необходимо измерять, опущен электрод 2, покрытый изоляционным материалом. Электрод вместе со стенками сосуда образует цилиндрический конденсатор, емкость которого меняется при колебаниях уровня жидкости. Величина емкости измеряется электронным блоком 3, который затем подает сигнал в блок 4, представляющий собой релейный элемент в схемах сигнализации достижения определенного уровня.
П
ринцип
действия сигнализатора
уровня заключается в том,
что при резонансном методе контролируемая
емкость, включенная параллельно с
индуктивностью, образует резонансный
контур, настроенный на резонанс
питающей частоты при определенной
начальной емкости преобразователя,
которая соответствует наличию или
отсутствию контролируемого вещества
на заданном уровне.
И
Е
Рис.
2 .Схема емкостного уровнемера:
1
– сосуд с жидкостью; 2
– электрод; 3
– электронный блок; 4
– релейный блок или измерительный
прибор
При заметной разнице диэлектрических проницаемостей двух сред сигнализатор может быть применен для контроля положения границы раздела этих сред [1].
4.4. Методы измерения уровня сыпучих сред
Уровень сыпучих сред измеряется с помощью поплавкового и весового уровнемеров:
Работа поплавкового уровнемера с поплавком постоянного погружения основана на поддерживающей способности сыпучего тела, выражающейся в том, что опущенный на открытую поверхность поплавок прибора не проваливается в глубь сыпучего материала.
Весовые уровнемеры сыпучего материала применяются в тех случаях, когда подвеска бункера не вызывает конструктивных осложнений и загрузка и выгрузка материала производятся не рывками, а равномерным потоком. В качестве преобразователей в этом случае могут быть использованы различные весовые устройства. Так, в качестве преобразователя предельного уровня, если бункер покоится на опорных пружинах, могут быть использованы конечные выключатели. При нагружении бункера происходят сжатие опорных пружин и линейное перемещение бункера по вертикали. Штанга, укрепленная на бункере, взаимодействуя с конечными выключателями, обеспечивает срабатывание при наполнении и опорожнении бункера.
В качестве преобразователей в весовых уровнемерах могут использоваться динамические датчики и тензомеры. В этом случае измеряется давление, передаваемое на опору бункера. Это давление является функцией степени наполнения бункера материалом [1].
4.5. Радарные измерители уровня
Для сложных измерений уровня используются радарные измерители.
Радарные измерители производят безконтактные измерения уровня. Они удобны для применения, где необходимо прямое измерение; при измерении коррозионных, абразивных, клейких или вязких жидкостей, с которыми проблематично использование контактных устройств; измерение при изменениях температуры и давления.
Измерители использует радарную технологию, основанную на распространении непрерывного частотно-модулированного излучения (НЧМИ) микроволнового диапазона. Сигнал радара (рис. 3) (микроволна) посылается от измерителя к поверхности среды и отражается назад на приемник измерителя. Приемник оценивает разность фаз между посланным и принятым сигналом. Радарные измерители выдают аналоговый выходной сигнал 4-20 мА
Рис.
3. Ширина луча радарного измерителя
APEX
Частота 24 ГГц и современная электроника позволяет радарным измерителям использовать небольшую антенну и получать узкий пучок излучения (рис. 4). Маленькая легкая антенна упрощает установку, а узкий луч уменьшает нежелательное эхо от препятствий, находящихся в резервуаре, таких как мешалки, теплообменники, трубы для заполнения, перегородки, теплозащитные карманы и периодические потоки для заполнения резервуара. Узкий луч также повышает удобство монтажа, поскольку измеритель может быть смонтирован на имеющиеся фланцы, расположенные достаточно близко к стенке резервуара.
Рис.
4. Схема размещения радарного измерителя
APEX