
Весна 16 курс 3 ОрТОР / Теория АД / 8
.docx8.17. Применение энтальпийной диаграммы для анализа процессов ускорения газа и сопле
При расчёте газовых турбин и компрессоров, для нахождения скорости истечения газа из сопла и лопаточных каналов широко используются энтальпийные диаграммы, построенные в “i-s” координатах (энтальпия - энтропия).
Рассмотрим процессы ускорения (расширения) газа в сопле при наличии трения с использованием “i-s” диаграммы (рис. 8.28.).
Рис. 8.28. Изображение процессов ускорения газа в сопле на “i-s” диаграмме. Процесс расширения газа в одноступенчатой турбине в “i-s” координатах.
На этой диаграмме начальное состояние (т. Г) находится обычно по значению начального давления рГ и начальной температуры ТГ. Если в начальном состоянии газ неподвижен, то это будет (т.Г*) с параметрами pГ* и TГ*, В случае идеального газа линии постоянной энтальпии и линии постоянной температуры совпадают.
Для конечного состояния обычно бывает известно значение давления рТ. Если рассматривается течение газа без теплообмена и без трения, то изменение его состояния изображается (рис. 8.28.) вертикальной линией Г-Тад (изоэнтропическое течение) или Г*-Т*ад.
Таким
образом, изменение энтальпии газа
изображается вертикальным
отрезком
Г-Тад,
соединяющим линии рГ
= const,
и
рТад=const
на
энтальпийной “i-s”
диаграмме.
Изменение энтальпии при изоэнтропическом (адиабатном) течении газа называется располагаемым теплоперепадом (адиабатным теплоперепадом) и обозначается Н.
Очевидно из рис. 8.28. располагаемый теплоперепад определяют как разность энтальпий между точками Г* и Тад:
(8.75)
Располагаемый теплоперепад, выраженный через параметры заторможенного потока (между точками Г* и Тад*) будет равен:
(8.76)
Течение газов при наличии трения не будет адиабатным (изоэнтропным). Так как из-за действия сил трения происходит диссипация (рассеяние) механической энергии и превращение части её в теплоту, в результате чего внутренняя энергия, энтальпия, энтропия движущегося газа возрастает. Этот процесс изображается в “i-s” диаграмме (рис. 8.28.) в виде линии Г-Т. Теплота трения при отсутствии теплообмена с окружающей средой усваивается потоком газа, при этом часть теплоты трения идёт на работу расширения и преобразуется в энергию движения газа. Остальная часть представляет собой потерю работы (кинетической энергии).
Разность энтальпий в реальном процессе расширения газа между точками Г*-Т называется действительным теплоперепадом и обозначается h:
(8.77)
Действительный
перепад-это часть энтальпии, которая
расходуется на увеличение кинетической
энергии газа. Действительный теплоперепад,
выраженный через параметры
заторможенного
потока между точками Г*
и Т*
будет равен:
ХХХХХХХХХХХХХХХХХХХХХХХХХХХХХХХХХХХ
Из
рис. 8.28. видно, что действительный
теплоперепад при наличии трения будет
меньше, а, следовательно, и скорость
истечения газа, определяемая
формулой
будет меньше, чем в случае течения без
трения.
Это
учитывается в расчетах введением
поправочного
коэффициента
,
который зависит от формы канала, качества
обработки поверхности, от скорости
истечения
и вязкости газа, ряда других причин. Его
значение определяется опытным путем.
Расстояние по вертикали между точками Т и Тад изображают потери энергии на трение Д.Поскольку при наличии трения процесс становится неравновесным, то линия 1 -2 не изображает истинного изменения состояния газа и является лишь условным изображением процесса движения газа с трением.