
- •Типовые патологические процессы
- •4. Исход болезни.
- •По глубине поражения тканей отморожения могут быть:
- •I. По времени:
- •II. По характеру проявления:
- •2) Смена типов трофики и интенсификация обменов веществ.
- •3) Снижение регуляторной деятельности.
- •4) Разрывом корреляционных связей между клеточными компонентами, зачатками органов и тканей;
- •1. Структура митохондриальной
- •2. Функции митохондрий
- •3. Этиология и патогенез
- •4. Классификация и общая характеристика
- •5. Диагностика митохондриальных заболеваний
- •6. Лечение митохондриальных заболеваний
- •Реактивность организма
- •Категории реактивности
- •• Степень специфичности, дифференцированности ответа организма на данный фактор позволяет выделить реактивность специфическую и неспецифическую.
- •• Выраженность реакции организма на воздействиепроявляется четырьмя разновидностями реактивности: нормергической, гиперергической, гипоергической и анергической.
- •• Природа агента в зависимости от природы агента, вызывающего ответ организма, выделяют иммуногенную и неиммуногенную реактивность.
- •• Биологическая значимость ответаорганизма определяет физиологическую и патологическую реактивность.
- •Биологическая (видовая) реактивность
- •Групповая реактивность
- •Индивидуальная реактивность
- •Иммунологическая реактивность
- •Роль конституции
- •Типы конституции и болезни
- •Иммунологическая толерантность — состояние приобретенной специфической ареактивности к антигену.
- •I. Нарушение энергетического процесса, протекающего в клетке:
- •I. Ферментные антиоксидантные системы:
- •II. Неферментные антиоксиданты:
- •40. Основы оценки состояния клеток при повреждении: значение регистрации биопотенциалов, сцинтиографии, ферментометрии, показателей обмена веществ, кос.
- •1. Интраваскулярные (внутрисосудистые) расстройства
- •2. Трансмуральные («чресстеночные») расстройства
- •3. Внесосудистые (эстраваскулярные) нарушения
- •I. По этиологии:
- •II. Нейромиопаралитический механизм характеризуется:
- •1. Физиологическая
- •Селезенка
- •Конечности
- •Полости
- •I. Нейрогенные механизмы (нейротонический и нейропаралитический) развития ишемии.
- •III. Механическое звено патогенеза ишемии:
- •I. По составу:
- •III. По этиологии:
- •Дистрофия
- •Селезенка
- •Конечности
- •Полости
- •Последствия
- •Эмболия
- •1. Экзогенная (первичная, алиментарная):
- •2. Эндогенная (вторичная):
- •Отрицательный азотистый баланс — распад белка превалирует над синтезом и азота поступает в организм меньше, чем выделяется.
- •I. Экзогенное
- •II. Эндогенное
- •III. Лечебное.
- •Болезнь Гартнепа
- •1. Алиментарная (экзогенная, первичная):
- •2. Эндогенная (вторичная):
- •1. Синтез роста.
- •2. Синтез стабилизирующий.
- •3. «Регенерационный» синтез.
- •4. Функциональный синтез.
- •1. По степени увеличения массы тела:
- •2. По особенностям морфологии жировой ткани:
- •2. Гипотиреоидный механизм.
- •4. Инсулиновый механизм
- •1. Клинические:
- •2. Лабораторные:
- •2. Нарушение метаболизма гликогена:
- •1. Алиментарная:
- •4. Гликогеновая:
- •5. Печеночная:
- •6. «Почечный» диабет:
- •9. Идиопатическая
- •I. По этиологии:
- •II. По патогенезу:
- •III. По локализации дефекта:
- •6. Вирусные инфекции.
- •7. Необычные формы инсулинопосредованного диабета.
- •8. Другие генетические синдромы.
- •9. Гестационный сд.
- •Гомоцистинурия
- •Симптомокомплекс гомоцистинурии
- •Болезнь Гартнепа
- •3 Клинических типа болезни Гоше.
- •Биохимическая диагностика болезней накопления липидов
- •Гиперлипопротеидемия III типа
- •1. По этиологии:
- •2. По скорости развития:
- •3. По степени тяжести:
- •1. Нормобарическая
- •2. Гипобарическая
- •2) По локализации канцерогенного эффекта:
- •3) По числу поражаемых органов:
- •4) По химической природе:
- •2) По локализации канцерогенного эффекта:
- •3) По числу поражаемых органов:
- •4) По химической природе:
I. Нарушение энергетического процесса, протекающего в клетке:
Снижение интенсивности и эффективности процессов ресинтеза АТФ (снижение количества субстратов дыхания, количества кислорода, активности ферментов, патология митохондрий)
Нарушение транспорта и использования энергии АТФ.
II. Повреждение мембранного аппарата и ферментных систем клетки.
Чрезмерная интенсификация свободнорадикальных реакций и перекисного окисления липидов.
Значительная активация гидролаз.
Внедрение амфифильных соединений в липидную фазу мембран.
Торможение процессов ресинтеза поврежденных компонентов мембран и синтеза их заново.
Нарушение конформации молекул белка, липопротеидов, фосфолипидов.
Перерастяжение и разрыв мембран набухших клеток и их органелл.
III. Дисбаланс ионов и жидкости, изменение электрофизиологических свойств клетки:
Изменение соотношения отдельных ионов в гиалоплазме.
Изменение трансмембранного соотношения ионов.
Гипергидратация клеток (увеличение концентрации Na+ и K+).
Дегидратация клеток (снижение количества жидкости и белков).
IV. Нарушение генетической программы клетки и (или) механизмов ее реализации:
Нарушение генетической программы.
Изменение биохимической структуры генов.
Дерепрессия патогенных генов.
Репрессия «жизненно важных» генов.
Внедрение в геном фрагмента чужеродной ДНК с патогенными свойствами.
V. Расстройство внутриклеточных механизмов регуляции функции клеток:
Hарушение рецепции регуляторных воздействий.
Hарушение образования вторых посредников (мессенждеров).
Hарушение фосфорилирования протеинкиназ.
Роль свободных радикалов в развитии патологических процессов
Свободные радикалы отличаются от обычных молекул тем, что у них на внешней электронной оболочке имеется неспаренный (одиночный) электрон. Это делает их химически активными, поскольку они стремятся вернуть себе недостающий электрон, отняв его от окружающих молекул и тем самым повреждая их. Свободные радикалы вступают в реакции с неорганическими и органическими соединениями - белками, липидами, углеводами, нуклеиновыми кислотами, инициируют аутокаталитические реакции, в ходе которых молекулы, с которыми они реагируют, также превращаются в свободные радикалы. Таким образом, свободные радикалы - высокоактивные молекулы, способные разрушать структуры клетки.
Рис. 1. Классификация радикалов в организме человека
(по В.В. Новицкому и соавт., 2009)
Повреждающее действие пероксидации липидов
Перекисное окисление липидов (ПОЛ) — это разветвленная цепная реакция, идущая с участием активных форм кислорода (свободных радикалов):
участвует в обновлении клеточных мембран (регуляции липидного состава мембран);
влияет на активность мембраносвязанных ферментов;
участвует в синтезе простагландинов, лейкотриенов;
участвует в процессах эндоцитоза, фагоцитоза;
играет существенную роль в патогенезе опухолей, атеросклероза, ишемических повреждений сердца, мозга, почек, в развитии стресса ═> «свободно-радикальные болезни».
Основными мишенями ПОЛ в мембранных структурах клеток являются либо белковые структуры, либо липидный бислой в целом.
Рис. 2. Повреждающее действие перекисного окисления липидов на биологические мембраны (по В.В. Новицкому и соавт., 2009)
Наиболее чувствительны к перекисному окислению липидов сульфгидрильные, или тиоловые, группы (SH) мембранных белков: ферментов, ионных каналов и насосов. В ходе окисления тиоловых групп образуются радикалы (S), которые затем либо взаимодействуют друг с другом с образованием дисульфидов (SS), либо связываются с кислородом с образованием сульфитов и сульфатов (SO3 и SO4). Большую роль в патологии клетки играет также повреждение ионтранспортирующих ферментов (например, Ca2+, Мg2+-АТФазы), в активный центр которых входят тиоловые группы. Инактивация Са2+-АТФазы приводит к замедлению откачивания из клетки ионов кальция и ускорению их «протечки» в клетку (где их концентрация меньше). Это вызывает рост уровня ионов кальция в цитоплазме и повреждение клеточных структур.
Окисление тиоловых групп мембранных белков приводит к появлению дефектов в мембранах клеток и митохондрий. Под действием электрического поля через такие дефекты в клетки входят ионы натрия, а в митохондрии — ионы калия. В результате происходит увеличение осмотического давления внутри клеток и митохондрий и их набухание. Это приводит к еще большему повреждению мембранных структур.
Наряду с белками и нуклеиновыми кислотами мишенью повреждающего действия ПОЛ служит сам липидный бислой. Было показано, что продукты ПОЛ делают липидную фазу мембран проницаемой для ионов водорода и кальция. Это приводит к тому, что в митохондриях окисление и фосфорилирование разобщаются, и клетка оказывается в условиях энергетического голода. Одновременно из митохондрий в цитоплазму выходят ионы кальция, которые повреждают клеточные структуры.
Возможно, наиболее важный результат пероксидации — это уменьшение электрической стабильности липидного слоя, которое приводит к электрическому пробою мембраны собственным мембранным потенциалом. Электрический пробой вызывает полную потерю мембраной ее барьерных функций.
Антиоксидантная защита клеток
В клетках протекают процессы и действуют факторы, которые ограничивают или даже прекращают свободнорадикальные и перекисные реакции, т.е. оказывают антиоксидантный эффект. Одним из таких процессов является взаимодействие радикалов и гидроперекисей липидов между собой, что ведет к образованию «нерадикальных» соединений. Ведущая роль в системе антиоксидантной защиты клеток играют механизмы ферментной и неферментной природы.