- •Взаимодействие ионизирующего излучения с веществом
- •Величина лпэ в кэВ/мкм зависит от плотности вещества.
- •Относительная биологическая эффективность различных видов излучений
- •Физико-химические основы биологического действия ионизирующего излучения. Защита от ионизирующих излучений
- •Ионизационные потери
- •Тормозное и черенковское излучения
- •Прямое и косвенное действие излучений на мишени в клетках
- •Первичные продукты радиолиза воды и их взаимодействие с биомолекулами
- •Дифференциальное уравнение гармонического колебания.
- •Уравнение для смещения, скорости и ускорения колеблющейся точки.
- •Энергия при гармоническом колебании.
- •Таким образом, полная энергия гармонического колебания оказывается постоянной в отсутствие сил трения. Сложение гармонических колебаний, направленных по одной прямой.
- •Сложное колебание и его гармонический спектр.
- •Сложение взаимно-перпендикулярных колебаний.
- •Затухающие колебания.
- •Уравнение волны.
- •Эффект доплера.
- •Акустика.
- •Природа звука.
- •Характеристики слухового ощущения и их связь с физическими характеристиками звука.
- •Физические основы звуковых методов исследования в клинике.
- •Голография
- •Дифракция света. Дифракция на щели в параллельных лучах.
- •Дифракция решётки. Дифракционный спектр.
- •Дозиметрия ионизирующего излучения. Поглощенная и экспозиционная дозы. Мощность дозы. Связь мощности дозы и активности. Дозиметрические приборы.
- •Внесистемная – рад
- •Детекторы ионизирующего излучения. Ионизационные камеры.
- •Газоразрядные счетчики. Фотографические сцинтилляционные,
- •Полупроводниковые и черенковские детекторы.
- •Авторадиография.
- •Импульсный сигнал и его параметры.
- •Генераторы импульсных (релаксационных) электрических колебаний. Мультивибратор. Блокинг-генератор.
- •Дифференцирующая и интегрирующая цепи: принципиальная схема, зависимость формы выходного импульса от длительности входного и постоянной времени цепи.
- •Физиотерапевтические аппараты низкочастотной терапии. Электронные стимуляторы для физиологических исследований и для лечебных целей. Типы и устройство кардиостимуляторов.
- •Дефибрилляторы.
- •Магнитные моменты электрона, атома и молекулы.
- •Магнитные свойства вещества.
- •Аппарат терапии переменным магнитным полем.
- •Физические основы магнитокардиографии.
- •Мембранные потенциалы и их ионная природа.
- •Диффузия. Пассивный перенос неэлектолитов через биомембраны, уравнение Рика. Транспорт неэлектролитов через мембраны путем простой и облегченной (в комплексе с переносчиком) диффузии.
- •Механические свойства биологических тканей.
- •Вязкоупругие, упруговязкие и вязкопластичные
- •Системы. Механические свойства мышц, костей,
- •Кровеносных сосудов, лёгких
- •Задачи, объекты и методы биомеханики.
- •Биомеханика опорно-двигательной системы человека. Биомеханические аспекты остеогенеза.
- •Эргометрия. Механические свойства тканей организма.
- •Микроскоп. Формула для увеличения.
- •Разрешающая способность. Значение апертурного угла. Формула для предела разрешения.
- •Ультрафиолетовый микроскоп.
- •Иммерсионные системы.
- •Полезное увеличение.
- •Специальные приемы микроскопии:
- •Основные характеристики ядер атомов.
- •Радиоактивность. Основной закон радиоактивного распада. Активность.
- •Ядерные реакции. Методы получения радионуклидов.
- •Пассивный и активный транспорт веществ
- •Лиганд - малая молекула (ион, гормон, лекарственный препарат и др.). Второй этап работы фермента - гидролиз атф. При этом происходит образование энзим - фосфатного комплекса (е-р).
- •Перенос кальция из области меньшей (1-4 х 10-3 м) в область больших концентраций (1-10 х 10-3 м) - это и есть та работа, которую совершает Са - транспортная атФаза в мышечных клетках.
- •Проницаемость.
- •Поляризация света.
- •Поляризация при двойном лучепреломлении. Поляризационные устройства.
- •Вращение плоскости поляризации (оптическая активность).
- •Дисперсия оптической активности. Использование поляризованного
- •Света в медико-биологических исследованиях: поляриметрия
- •(Сахариметрия), спектрополяриметрия, поляризационный микроскоп.
- •Прохождение тока через ткани организма. Удельное сопротивление биологических тканей жидкостей при постоянном токе.
- •Первичное действие постоянного тока на ткани организма.
- •Гальванизация.
- •Лечебный электрофорез.
- •Прохождение тока через ткани организма. Удельное сопротивление биологических тканей жидкостей при постоянном токе.
- •Первичное действие постоянного тока на ткани организма.
- •Гальванизация.
- •Лечебный электрофорез.
- •1. Механические волны, их виды и скорость распространения.
- •Уравнение волны.
- •Акустика. Природа звука. Физические характеристики звука. Тоны и шумы.
- •Физические характеристики звука. Тоны и шумы.
- •Характеристики слухового ощущения и их связь с физическими характеристиками звука.
- •Понятие о звукопроводящей и звуковоспринимающей системах уха человека. Физика слуха.
- •Поглощение и отражение звуковых волн. Реверберация.
- •Физические основы звуковых методов исследования в клинике.
- •2. Механические колебания: гармонические, затухающие и вынужденные колебания.
- •Дифференциальное уравнение гармонического колебания.
- •Энергия при гармоническом колебании.
- •Затухающие колебания.
- •Вынужденные колебания. Резонанс.
- •Автоколебания.
- •Разложение колебаний в гармонический спектр. Применение гармонического анализа для обработки диагностических данных. Сложение гармонических колебаний, направленных по одной прямой.
- •Сложное колебание и его гармонический спектр.
- •Сложение взаимно-перпендикулярных колебаний.
- •Ультразвук. Методы получения и регистрации.
- •Источники и приемники акустических колебаний и ультразвука.
- •Физические основы действия ультразвуковых волн на вещество. Низкочастотный и высокочастотный ультразвук.
- •Физические основы применения ультразвуковых волн в медицине Ультразвуковая диагностика. Хирургическое и терапевтическое применение ультразвука.
- •Эффект Доплера и его применение для неинвазивного измерения скорости кровотока.
- •Инфразвук, особенности его распространения. Физические основы действия инфразвука на биологические системы.
- •Вибрации, их физические характеристики
- •Ударные волны.
- •Модель Вольтера
- •Модель, представляющая сердечно-сосудистую систему как электрическую цепь. Чисто резистивная модель
- •1.1.2.5. Модели электрической активности сердца
- •1. Основные понятия гидродинамики. Условие неразрывности струи
- •Уравнение Бернулли.
- •Внутреннее трение (вязкость) жидкости. Формула Ньютона.
- •Ньютоновские и неньютоновские жидкости.
- •Методы определения вязкости жидкости.
- •Реологические свойства крови, плазмы и сыворотки. Факторы, влияющие на вязкость крови в организме.
- •Фотоэффект.
Первичные продукты радиолиза воды и их взаимодействие с биомолекулами
При облучении водных растворов косвенное поражение макромолекул происходит за счет их взаимодействия с радикалами Н, ОН и перекисью водорода, а также «гидратированного электрона», особой стабилизированной формы электрона, открытой в облученной воде.
За 10-11 – 10-10 с вокруг стабилизированного электрона возникает область радиальной поляризации, т.е. поляризованные молекулы воды ориентируются в собственном электрическом поле электрона.
Область радиальной поляризации, обладающая избыточным положительным зарядом около своего центра, служит ловушкой для электрона, обусловливающего поляризацию. Вместе они образуют уникальное образование – гидратированный электрон, который в химическом отношении ведет себя, как очень активный ион, вступая в реакции со многими веществами при первом соударении. Время жизни еˉгидр. в высокоочищенной воде приближается к 1 мс. Такое большое время жизни позволяет гидратированному электрону диффундировать на значительные расстояния от трека первичной ионизирующей частицы и взаимодействовать с растворенными молекулами.
Первичные реакции, происходящие после возбуждения и ионизации, которые мы обсуждали выше, можно суммировать в виде общей схемы:
Первичные продукты радиолиза воды – радикалы Н▪, ОН▪, еˉгидр. – располагаются в пространстве достаточно близко друг от друга, образуя своеобразные скопления «рои» небольшого объема, средний радиус которых около 1,5нм. Радиохимики называют эти скопления шнурами. В среднем на шнур приходится около 6 радикалов. Именно в шнуре происходит рекомбинация радикалов с образованием молекулярных продуктов – Н2 и Н2О2.
Атаковать растворенные молекулы могут лишь те радикалы, которые не рекомбинируют, а выходят из шнура. Эти радикалы, а также молекулярные продукты радиолиза называют продуктами радиолиза воды, образование их отражает следующее суммарное уравнение:
где Н3О+ - принятая форма записи пока Н+, уравновешивающего отрицательный заряд гидратированного электрона.
Радиационно-химический выход первичных продуктов радиолиза воды
Продукты радиолиза воды |
Значение G |
е-гидр. |
2,6 |
Н▪ |
0,6 |
ОН▪ |
2,6 |
Н2О2 |
0,75 |
Н2 |
0,45 |
G – величина радиационно-химического выхода G - В таблице приведены радиационно-химические выходы продуктов радиолиза воды. Оказалось, что при нейтральном значении рН на каждые 100эВ поглощенной энергии излучения в наибольшем количестве образуются гидратированные электроны и радикалы ОН▪.
Продукты радиолиза воды высокоактивны по отношению к аминокислотам, белкам, нуклеотидам и ДНК.
ГАРМОНИЧЕСКИЕ КОЛЕБАНИЯ.
Колебаниями называются процессы, отличающиеся той или иной cтепенью повторяемости (качание маятника часов, колебания струны или ножек камертона, напряжение между обкладками конденсатора в контуре радиоприемника, работа сердца).
В зависимости от физической природы повторяющегося процесса различают колебания: механические, электромагнитные, электромеха-нические и т.д. Мы будем рассматривать механические колебания.
Колебания, происходящие при отсутствии трения и внешних сил, называются собственными; их частота зависит только от свойств системы.
Простейшими являются гармонические колебания, то есть такие колебания, при которых колеблющаяся величина (например, отклонение маятника) изменяется со временем по закону синуса или косинуса.