- •Взаимодействие ионизирующего излучения с веществом
- •Величина лпэ в кэВ/мкм зависит от плотности вещества.
- •Относительная биологическая эффективность различных видов излучений
- •Физико-химические основы биологического действия ионизирующего излучения. Защита от ионизирующих излучений
- •Ионизационные потери
- •Тормозное и черенковское излучения
- •Прямое и косвенное действие излучений на мишени в клетках
- •Первичные продукты радиолиза воды и их взаимодействие с биомолекулами
- •Дифференциальное уравнение гармонического колебания.
- •Уравнение для смещения, скорости и ускорения колеблющейся точки.
- •Энергия при гармоническом колебании.
- •Таким образом, полная энергия гармонического колебания оказывается постоянной в отсутствие сил трения. Сложение гармонических колебаний, направленных по одной прямой.
- •Сложное колебание и его гармонический спектр.
- •Сложение взаимно-перпендикулярных колебаний.
- •Затухающие колебания.
- •Уравнение волны.
- •Эффект доплера.
- •Акустика.
- •Природа звука.
- •Характеристики слухового ощущения и их связь с физическими характеристиками звука.
- •Физические основы звуковых методов исследования в клинике.
- •Голография
- •Дифракция света. Дифракция на щели в параллельных лучах.
- •Дифракция решётки. Дифракционный спектр.
- •Дозиметрия ионизирующего излучения. Поглощенная и экспозиционная дозы. Мощность дозы. Связь мощности дозы и активности. Дозиметрические приборы.
- •Внесистемная – рад
- •Детекторы ионизирующего излучения. Ионизационные камеры.
- •Газоразрядные счетчики. Фотографические сцинтилляционные,
- •Полупроводниковые и черенковские детекторы.
- •Авторадиография.
- •Импульсный сигнал и его параметры.
- •Генераторы импульсных (релаксационных) электрических колебаний. Мультивибратор. Блокинг-генератор.
- •Дифференцирующая и интегрирующая цепи: принципиальная схема, зависимость формы выходного импульса от длительности входного и постоянной времени цепи.
- •Физиотерапевтические аппараты низкочастотной терапии. Электронные стимуляторы для физиологических исследований и для лечебных целей. Типы и устройство кардиостимуляторов.
- •Дефибрилляторы.
- •Магнитные моменты электрона, атома и молекулы.
- •Магнитные свойства вещества.
- •Аппарат терапии переменным магнитным полем.
- •Физические основы магнитокардиографии.
- •Мембранные потенциалы и их ионная природа.
- •Диффузия. Пассивный перенос неэлектолитов через биомембраны, уравнение Рика. Транспорт неэлектролитов через мембраны путем простой и облегченной (в комплексе с переносчиком) диффузии.
- •Механические свойства биологических тканей.
- •Вязкоупругие, упруговязкие и вязкопластичные
- •Системы. Механические свойства мышц, костей,
- •Кровеносных сосудов, лёгких
- •Задачи, объекты и методы биомеханики.
- •Биомеханика опорно-двигательной системы человека. Биомеханические аспекты остеогенеза.
- •Эргометрия. Механические свойства тканей организма.
- •Микроскоп. Формула для увеличения.
- •Разрешающая способность. Значение апертурного угла. Формула для предела разрешения.
- •Ультрафиолетовый микроскоп.
- •Иммерсионные системы.
- •Полезное увеличение.
- •Специальные приемы микроскопии:
- •Основные характеристики ядер атомов.
- •Радиоактивность. Основной закон радиоактивного распада. Активность.
- •Ядерные реакции. Методы получения радионуклидов.
- •Пассивный и активный транспорт веществ
- •Лиганд - малая молекула (ион, гормон, лекарственный препарат и др.). Второй этап работы фермента - гидролиз атф. При этом происходит образование энзим - фосфатного комплекса (е-р).
- •Перенос кальция из области меньшей (1-4 х 10-3 м) в область больших концентраций (1-10 х 10-3 м) - это и есть та работа, которую совершает Са - транспортная атФаза в мышечных клетках.
- •Проницаемость.
- •Поляризация света.
- •Поляризация при двойном лучепреломлении. Поляризационные устройства.
- •Вращение плоскости поляризации (оптическая активность).
- •Дисперсия оптической активности. Использование поляризованного
- •Света в медико-биологических исследованиях: поляриметрия
- •(Сахариметрия), спектрополяриметрия, поляризационный микроскоп.
- •Прохождение тока через ткани организма. Удельное сопротивление биологических тканей жидкостей при постоянном токе.
- •Первичное действие постоянного тока на ткани организма.
- •Гальванизация.
- •Лечебный электрофорез.
- •Прохождение тока через ткани организма. Удельное сопротивление биологических тканей жидкостей при постоянном токе.
- •Первичное действие постоянного тока на ткани организма.
- •Гальванизация.
- •Лечебный электрофорез.
- •1. Механические волны, их виды и скорость распространения.
- •Уравнение волны.
- •Акустика. Природа звука. Физические характеристики звука. Тоны и шумы.
- •Физические характеристики звука. Тоны и шумы.
- •Характеристики слухового ощущения и их связь с физическими характеристиками звука.
- •Понятие о звукопроводящей и звуковоспринимающей системах уха человека. Физика слуха.
- •Поглощение и отражение звуковых волн. Реверберация.
- •Физические основы звуковых методов исследования в клинике.
- •2. Механические колебания: гармонические, затухающие и вынужденные колебания.
- •Дифференциальное уравнение гармонического колебания.
- •Энергия при гармоническом колебании.
- •Затухающие колебания.
- •Вынужденные колебания. Резонанс.
- •Автоколебания.
- •Разложение колебаний в гармонический спектр. Применение гармонического анализа для обработки диагностических данных. Сложение гармонических колебаний, направленных по одной прямой.
- •Сложное колебание и его гармонический спектр.
- •Сложение взаимно-перпендикулярных колебаний.
- •Ультразвук. Методы получения и регистрации.
- •Источники и приемники акустических колебаний и ультразвука.
- •Физические основы действия ультразвуковых волн на вещество. Низкочастотный и высокочастотный ультразвук.
- •Физические основы применения ультразвуковых волн в медицине Ультразвуковая диагностика. Хирургическое и терапевтическое применение ультразвука.
- •Эффект Доплера и его применение для неинвазивного измерения скорости кровотока.
- •Инфразвук, особенности его распространения. Физические основы действия инфразвука на биологические системы.
- •Вибрации, их физические характеристики
- •Ударные волны.
- •Модель Вольтера
- •Модель, представляющая сердечно-сосудистую систему как электрическую цепь. Чисто резистивная модель
- •1.1.2.5. Модели электрической активности сердца
- •1. Основные понятия гидродинамики. Условие неразрывности струи
- •Уравнение Бернулли.
- •Внутреннее трение (вязкость) жидкости. Формула Ньютона.
- •Ньютоновские и неньютоновские жидкости.
- •Методы определения вязкости жидкости.
- •Реологические свойства крови, плазмы и сыворотки. Факторы, влияющие на вязкость крови в организме.
- •Фотоэффект.
Дифракция света. Дифракция на щели в параллельных лучах.
Дифракцией света называют явление отклонения света от прямолинейного распространения в среде с резкими неоднородностями. Возможность наблюдения дифракции зависит от соотношения длины волны и размеров неоднородностей.
Различают с некоторой степенью условности дифракцию сферических волн (дифракция Френеля) и дифракцию плоскопараллельных волн (дифракция Фраунгофера).
Расчет и объяснение дифракции света можно приближённо сделать, используя принцип Гюйгенса-Френеля.
Согласно Гюйгенсу, каждая точка волновой поверхности, которой достигла в данный момент волна, является центром элементарных вторичных волн, их внешняя огибающая будет волновой поверхностью в последующий момент времени.
Френель дополнил это положение Гюйгенса, введя представление о когерентности вторичных волн и их интерференции. В таком обобщённом виде эти идеи получили название принципа Гюйгенса-Френеля.
На узкую длинную щель, расположенную в плоской непрозрачной преграде МN, нормально падает плоскопараллельный пучок монохроматического света. Ширина щели АВ = а, L - собирающая линза, в фокальной плоскости которой расположен экран Э для наблюдения дифракционной картины.
Если бы не было дифракции, световые лучи, пройдя через щель, сфокусировались бы в точке О, лежащей на главной оптической оси линзы. Дифракция света на щели существенно изменяет явление.
Будем считать, что все лучи пучка света исходят от одного удалённого источника и следовательно, когерентны. АВ есть часть волновой поверхности, каждая точка которой является центром вторичных волн, распространяющихся за щелью по всевозможным направлениям. Мы рассматриваем только вторичные волны, распространяющегося пучка и нормали решётки. Линза соберёт эти волны в точке О экрана, где и будет наблюдаться их интерференция.
Разделим фронт волны в щели на части или зоны (зоны Френеля) так, чтобы разность хода между крайними лучами в зоне равнялась , то естьАС = СD = ; АА=АВ - равные зоны Френеля. Число зон, укладывающихся в щели, зависит от длины волны и угла . Если щель АВ будет разбита при построении на нечётное число зон Френеля, а АD - на нечётное число отрезков равных , то в точкеО наблюдается максимум интенсивности света:
где k = 1, 2, . . . Направление = 0 также отвечает максимуму, так как все вторичные волны придут в О в одинаковой фазе.
Если щель АВ будет разбита на чётное число зон Френеля, то наблюдается минимум интенсивности света:
,
где k = 1,2, . . .
Таким образом, на экране Э получится система светлых (максимум) и тёмных (минимум) полос, центром которых соответствуют условия (1) и (2), симметрично расположенных влево и вправо от центральной ( = 0), наиболее яркой полосы. Интенсивность I остальных максимумов убывает по мере удаления от центрального.
Если щель освещать белым светом, то на экране Э согласно (1) и (2) образуется система цветных полос, лишь центральный максимум будет сохранять цвет падающего света, так как в направлении = 0 усиливаются все длины волн.
1) << a , тогда , то естьsin 0 практически для всех максимумов, и дифракция при этом не наблюдается. Этот случай соответствует достаточно широкой, по сравнению с длиной волны, щели.
2) а << , тогда , отсюда /sin / 1, это означает, что при а вместо системы максимумов и минимумов весь экран будет слабо освещён.