
- •Глава 1. Обеспечение надежной работы магистральных трубопроводов на этапе их проектирования
- •1.1. Резервирование мт
- •1.1.1. Резервирование пропускной способности
- •1.1.2. Резервирование линейной части
- •1.1.3. Резервирование насосного оборудования
- •1.2. Деление магистральных трубопроводов на эксплуатационные участки
- •1.3. Защита трубопроводов от перегрузок по давлению 1.3.1. Причины возникновения перегрузок по давлению
- •1.3.2. Средства и методы защиты трубопроводов от перегрузок по давлению [71
- •1.4. Защита трубопроводов от коррозии 1.4.1. Классификация коррозионных процессов
- •1Спгги(ту)
- •1.4Л. Причины и механизм коррозии трубопроводов
- •1.4.3. Защитные покрытия для трубопроводов
- •1.4.4. Электрохимическая защита трубопроводов от коррозии
- •Защита от блуждающих токов Механизм наведения блуждающих токов на подземные металлические сооружения и их разрушения
- •1.5. Закрепление трубопроводов на проектных отметках
- •1.5.1. Способы берегоукрепления в створах подводных переходов
- •1.5.2. Предупреждение всплытия трубопроводов
- •Закрепление трубопроводов утяжеляющими железобетонными и чугунными пригрузами
- •1.6. Применение системы автоматизации и телемеханизации технологических процессов
- •Глава 2. Надежность действующих магистральных трубопроводов
- •2.1. Основные понятия теории надежности
- •2.2. Современное техническое состояние магистральных трубопроводов [3]
- •2.2.1. Линейная часть мт
- •2.2.2. Нефтеперекачивающие станции
- •2.2.3. Резервуары
- •Глава 3. Определение технического состояния магистральных нефте- и нефтепродуктопроводов [12,13]
- •3.1. Диагностика линейной части мт
- •3.1.1. Диагностика состояния стенок труб и арматуры
- •3.1.2. Диагностика напряженно-деформированного состояния линейной части трубопровода
- •3.1.4. Контроль состояния изоляционных покрытий трубопроводов
- •Глава 4. Профилактическое обслуживание магистральных трубопроводов
- •4.1. Стратегии технического обслуживания и ремонта
- •4.2.5. Недостатки системы ппр по наработке
- •4.2.6. Основные направления совершенствования системы ппр по наработке
- •Глава 5. Ремонт линейной части и резервуаров
- •5.1.1. Последовательность и содержание работ при ремонте мт с подъемом и укладкой его на лежки в траншее
- •Обеспечение надежности магистральных трубопроводов
1.4.4. Электрохимическая защита трубопроводов от коррозии
Практика показывает, что даже тщательно выполненное изоляционное покрытие в процессе эксплуатации стареет: теряет свои диэлектрические свойства, водоустойчивость, адгезию. Встречаются повреждения изоляции при засыпке трубопроводов в траншее, при их температурных перемещениях, при воздействии корней растений. Кроме того, в покрытиях остается некоторое количество незамеченных при проверке дефектов. Следовательно, изоляционные покрытия не гарантируют необходимой защиты подземных трубопроводов от коррозии. Исходя из этого, в СНиП 2.05.06-85 отмечается, что защита трубопроводов от подземной коррозии независимо от коррозионной активности грунта и района их прокладки должна осуществляться комплексно: защитными покрытиями и средствами электрохимической защиты (ЭХЗ).
Электрохимическая защита осуществляется катодной поляризацией трубопроводов.- Если катодная поляризация производится с помощью внешнего источника постоянного тока, то такая защита называется катодной, если же поляризация осуществляется присоединением защищаемого трубопровода к металлу, имеющему более отрицательный потенциал, то такая защита называется протекторной.
Методы расчета электрохимической защиты трубопроводов от коррозии изложены в [8].
Катодная защита
Принципиальная схема катодной защиты показана на рис. 1.6. Источником постоянного тока является станция катодной защиты 3, где с помощью выпрямителей переменный ток от вдольтрассовой ЛЭП 1, поступающий через трансформаторный пункт 2, преобразуется в постоянный.
Отрицательным полюсом источник с помощью кабеля 6 подключен к защищаемому трубопроводу 4, а положительным - к анодному заземлению 5. При включении источника тока электрическая цепь замыкается через почвенный электролит.
Принцип действия катодной защиты (рис. 1.7) аналогичен процессу электролиза. Под воздействием приложенного электрического поля источника начинается движение полусвободных валентных электронов в направлении "анодное заземление - источник тока - защищаемое сооружение". Теряя электроны, атомы металла анодного заземления переходят в виде ион-атомов в раствор электролита, т. е. анодное заземление разрушается. Ион-атомы подвергаются гидратации и отводятся вглубь раствора. У защищаемого же сооружения вследствие работы источника постоянного тока наблюдается избыток свободных электронов, т. е. создаются условия для протекания реакций кислородной и водородной деполяризации, характерных для катода.
Исследованиями установлено, что минимальный защитный потенциал стальных сооружений уложенных в песчаных и глинистых грунтах, изменяется от - 0.72 до - 1.1 В по медносульфатному электроду сравнения (МСЭ). Однако стальные подземные сооружения становятся защищенными на 80 - 90% уже в том случае, когда их потенциал равен - 0.85 В. Эта величина принята в качестве минимального защитного потенциала, который необходимо поддерживать на защищаемом сооружении.
Минимальный защитный потенциал должен поддерживаться на границе зоны действия станции катодной защиты (СКЗ). Так как величина защитного потенциала убывает с удалением от точки подключения СКЗ (точка дренажа), то максимальный защитный потенциал имеет место в точке дренажа. С тем, чтобы предотвратить разрушение и отслаивание изоляционного покрытия вследствие выделения газообразного водорода максимальная величина защитного потенциала ограничена: для стального сооружения с битумной изоляцией она составляет, например, - 1.1В по МСЭ. В случае, когда сооружение не имеет защитного покрытия, максимальная величина защитного потенциала не регламентируется.
|
Del. J |
|
lit |
— 77/rrr—rn777 гп 'Т/т" 5 _ |
|
Рис. !,6. Принципиальная схема катодной защиты
Ог
+ Н20+2е 20НР
Рис.
1.7. Механизм действия катодной защиты
Протекторная защита
Принцип действия протекторной защиты аналогичен работе гальванического элемента (рис. 1.8).
Два электрода: трубопровод 1 и протектор 2, изготовленный из более электроотрицательного металла, чем сталь, опущены в почвенный электролит и соединены проводником 3. Так как материал протектора является более электроотрицательным, то под действием разности потенциалов происходит направленное движение электронов от протектора к трубопроводу по проводнику 3. Одновременно ион-атомы материала протектора переходят в раствор, что приводит к его разрушению. Сила тока при этом контролируется с помощью контрольно-измерительной колонки 4.
Таким образом, разрушение металла все равно имеет место. Но не трубопровода, а протектора.
Теоретически для защиты стальных сооружений от коррозии могут быть использованы все металлы, расположенные в электрохимическом ряду напряжений левее железа,-т.к. они более электроотрицательны. Практически же протекторы изготавливаются только из материалов, удовлетворяющих следующим требованиям:
разность потенциалов материала протектора и железа (стали) должна быть как можно больше;
ток, получаемый при электрохимическом растворении единицы массы протектора (токоотдача), должен быть максимальным;
отношение массы протектора, израсходованной на создание защитного тока, к общей потере массы протектора (коэффициент использования) должно быть наибольшим.
Данным требованиям в наибольшей степени удовлетворяют магний, цинк и алюминий, физико-химические характеристики которых приведены в табл. 1.7.
Из табл. 1.7 видно, что отдать предпочтение какому-либо одному металлу трудно. Поэтому протекторы изготавливают из сплавов этих металлов с добавками, улучшающими работу протекторной защиты.
В зависимости от преобладающего компонента сплавы бывают магниевые, алюминиевые, цинковые. В качестве добавок используют марганец (способствует повышению токоотдачи), индий (препятствует образованию плотной окисной пленки на поверхности сплава, а значит, его пассивации) и другие металлы.
У
Рис. 1.8. Принципиальная схема протекторной защиты
б)
a) R 1
©
CP
Сооружение
Рельс Сооружение Рельс
сигнальн.. jlr устройствуtit
[]прф
В)
R -127/220 В
-—Cp-i Рj>
ВЗ I ,Ксигнальн. Шпр Щпр К / устройству
В
п
[ЗпрфСР
Сооружение Рельс
Рис. 1.9 Принципиальные схемы электрических дренажей а - прямой,б - поляризованный, в - усиленный
Таблица
1.7
Физико-химические
характеристики материалов для
изготовления протекторов
Показатели
Металл
Mg
Zn
А1
.....
Равновесный
электродный потенциал по нормальному
водородному электроду сравнения, В
-2.34
-0.76
-1.67
Токоотдача,
А ч/кг
2200
820
2980
Коэффициент
использования, %
50
90
85
Протекторную защиту рекомендуется использовать в грунтах с удельным сопротивлением не более 50 Ом м.
Применяют защиту протекторами, расположенными как поодиночке, так и группами. Кроме того, защита от коррозии трубопроводов может быть выполнена ленточными протекторами.