
- •Глава 5 показатели надежности, диагностика и снижение энергозатрат газоперекачивающих агрегатов
- •5.1. Показатели надежности газоперекачивающих агрегатов
- •Наработка на отказ у ряда гпа с газотурбинным приводом
- •5.2. Техническая диагностика газоперекачивающих агрегатов
- •Характеристики измерительных приборов для оценки состояния гпа
- •5.3. Определение технического состояния центробежных нагнетателей
- •5.3.1. Определение фактического политропического кпд нагнетателя
- •5.3.2. Определение паспортного (исходного) кпд нагнетателя
- •5.4. Определение технического состояния гпа с газотурбинным приводом
- •5.5. Диагностирование гпа в процессе работы и при выполнении ремонта
- •Классы чистоты турбинного масла в зависимости от его загрязнения
- •5.6. Причины увеличения энергетических затрат на транспорт газа и пути их снижения
- •5.7. Турбодетандер
- •5.8. Применение сменных (регулируемых) входных направляющих аппаратов для изменения характеристик цбн
- •Глава 6 автоматизация компрессорных станций
- •6.1. Система автоматического управления гпа
- •6.2. Датчики
- •6.3. Приборы
- •6.4. Вибрационный контроль гпа
- •6. 5. Измерение расхода газа
- •6.6. Системы безопасности компрессорных цехов
- •6.6.1. Системы управления охранными и общестанционными кранами. Ключи каос
- •6.6.2. Системы автоматики пожаротушения
- •Системы пожарообнаружения
- •6.6.3. Система контроля загазованности
- •6.7. Телемеханика
- •6.8. Мнемощит
- •6.9. Автоматизированное рабочее место диспетчера компрессорной станции (армд кс)
- •Глава 7 монтаж основного и вспомогательного оборудования на кс
- •7.1. Подготовка гпа к монтажу
- •7.2. Приемка фундамента под монтаж
- •Допускаемые отклонения фактических размеров от проектных на объектах фундамента
- •7.3. Монтаж блока нагнетателя и турбины на фундамент
- •7.4. Обвязка гпа технологическими трубопроводами
- •7.5. Монтаж вспомогательного оборудования гпа
- •7.6. Гидравлические испытания технологических коммуникаций компрессорной станции
- •7.7. Реконструкция, техперевооружение, модернизация действующих компрессорных станций
- •7.8. Пусконаладочные работы на компрессорной станции
- •Глава 8 техническое обслуживание и ремонт газоперекачивающих агрегатов с газотурбинным приводом
- •8.1. Основные положения и виды технического обслуживания гпа
- •Перечень работ при проведении среднего и капитального ремонтов гпа
- •8.2. Планирование и подготовка агрегата к ремонту
- •8.3. Ремонтная документация
- •Перечень и порядок составления технической документации при ремонте гпа
- •8.4. Вывод газоперекачивающего агрегата в ремонт
- •8.5. Виды дефектов и неразрушающий контроль гпа
- •8.6. Организация ремонта лопаточного аппарата осевого компрессора
- •8.7. Балансировка и балансировочные станки
- •8.8. Закрытие агрегата после ремонта и его опробование
- •Глава 9 охрана окружающей среды
- •9.1. Общие положения
- •9.2. Выбросы вредных веществ в атмосферу
- •Расход газа по составляющим операции пуска-останова гпа
- •Основные причины аварий на магистральных газопроводах
- •Выбросы в составе выхлопных газов
- •Величина номинальных выбросов вредных веществ для различных типов гпа
- •9.3. Сбросы загрязняющих веществ в водоемы
- •Основные показатели химического состава вод хозяйственно-питьевого и производственного назначения
- •Данные о сбросе сточных вод некоторыми отраслями промышленности России
- •9.4. Токсичные отходы
- •9.5. Охрана почв
- •9.6. Охрана недр
- •9.7. Шум и другие виды воздействия
- •9.8. Решение проблем экологии
- •Капитальные вложения рао "Газпром" в природоохранные мероприятия по годам (млрд. Руб.)
- •Глава 10 техника безопасности при работе на компрессорной станции
- •10.1. Общие требования по технике безопасности при обслуживании компрессорных станций
- •10.2. Техника безопасности при эксплуатации гпа и оборудования компрессорного цеха
- •10.3. Техника безопасности при ремонтах газоперекачивающих агрегатов
- •10.4. Огневые и газоопасные работы. Их проведение в условиях компрессорной станции
- •10.5. Требования к проведению работ в галерее нагнетателей со вскрытием нагнетателя
- •10.6. Обеспечение пожаробезопасности компрессорных станций
- •Категории взрыва и пожароопасности основных зданий и помещений кс
- •Список использованной литературы
- •Глава 6 автоматизация компрессорных станций
- •Глава 7 монтаж основного и вспомогательного оборудования на кс
- •Глава 8 техническое обслуживание и ремонт газоперекачивающих агрегатов с газотурбинным приводом
- •Глава 9 охрана окружающей среды
- •Глава 10 техника безопасности при работе на компрессорной станции
5.5. Диагностирование гпа в процессе работы и при выполнении ремонта
В объеме контроля параметров работы ГТУ эксплуатационный персонал в ряде случаев ведет замер и анализ температурного поля в пределах газовой турбины. В зависимости от типа ГТУ контролирующие термопары устанавливаются перед рабочими лопатками ТВД или за лопатками силовой турбины.
Проводя анализ температурного поля, можно сделать выводы по состоянию камеры сгорания, сопловых аппаратов ТВД и ТНД.
Идеальным считается вариант, когда окружность температурного поля имеет правильную форму, без пиков как на увеличение, так и на уменьшение температуры. Однако в реальных условиях идеальной окружности по температурному полю добиться невозможно, поэтому каждый тип ГТУ имеет допуск на разницу температур между min и mах.
На рис. 5.2 приведена диаграмма температурного поля агрегата ГТК-25И. Газоперекачивающий агрегат ГТК-25И имеет 12 трубчатых (индивидуальных) камер сгорания, одну ступень ТВД и одну ступень ТНД. Замер температурного поля производится за ТНД, где установлены по окружности 18 термопар из хромеля-алюмеля. Показания термопар заведены в систему автоматической защиты по перекосу температурного поля. Также эксплуатационный персонал контролирует визуально на показывающем мониторе величину температуры выхлопа по всем термопарам. Ежедневно записывая показания термопар и строя эпюры температурного поля, эксплуатационный персонал анализирует статистический материал состояния газовоздушного тракта и камер сгорания ГТУ. Исходя из анализа планируется объем работы и определяются узлы, требующие тщательной поверки или замены.
Рис. 5.2. Распределение температурного поля на выхлопе турбины ГТК-25И (вид на турбину со стороны ЦБН): А - термопары (№ 1-12); Б - изотермы на диаграмме
Например, имеется пик низкой температуры на термопаре № 2. По заводской инструкции определяется камера сгорания, которая могла бы дать эту температуру. Как правило, на этой камере сгорания обнаруживается закоксование сопел топливной форсунки.
В турбоагрегатах ГТК-10И температурное поле оценивается по показаниям термопар, устанавливаемых в выхлопной шахте. Температура газов, отходящих от турбины, измеряется 18 термопарами, 12 из которых являются рабочими и подают постоянный сигнал в систему регулирования, а 6 - контрольными и служат для срабатывания системы защиты.
Рекомендации заводов-изготовителей и накопленный опыт эксплуатации позволяют утверждать, что состояние участка горения можно считать удовлетворительным, если разность между любой из измеренных температур и средней температурой на выхлопе будет не более 20 °С.
Провалы температуры чаще всего бывают вызваны дефектами в переходных патрубках в виде трещин большой длины или обрыва части уплотнительных пластин. Эти дефекты вызывают нарушение теплового баланса горения из-за интенсивного перетекания в зону горения воздуха из осевого компрессора.
Другим признаком, указывающим на возможный дефект переходного патрубка, может являться перегрев пламяперекидной трубы, обычно наблюдаемый как свечение участка, расположенного на входе в жаровую трубу. Явление перегрева связано с периодическими перетоками газов из камеры сгорания с номинальным давлением в камеру сгорания с пониженным давлением.
Основная опасность перекоса температурного поля заключается в неравномерности воздействия температуры газа на рабочую лопатку. Известно, что действие температуры на тело вызывает в нем температурные деформации расширения при нагреве, и сжатия - при охлаждении. Допустим, что рабочее тело, выходящее из одной камеры сгорания, имеет более низкую температуру, чем у соседних. Тогда рабочая лопатка ротора, которая является самым нагруженным элементом турбины, входя в зону действия дефектной камеры, будет сжиматься, и, выйдя из нее, расширяться в зоне работы нормальной камеры сгорания. Это расширение-сжатие будет происходить с частотой вращения ротора. Под действием термоциклических деформаций быстро начинают развиваться усталостные микротрещины, и достаточно минимального внешнего воздействия в виде удара инородных частиц, чтобы произошел обрыв части пера лопатки, который ведет за собой лавинообразное разрушение соседних лопаток турбины.
Диагностика температурного поля на выхлопе турбины дает возможность проследить динамику изменения состояния зоны горения и определить влияние мероприятий ремонтного характера на состояние температурного поля.
На компрессорных станциях в системе подготовки масла к его использованию в ГПА организована очистка и контроль чистоты масла. Турбинное масло обычно проверяется на содержание воды и визуально - на мехпримеси.
В качестве диагностирующих приборов на компрессорных станциях нашли применение приборы контроля жидкости типа ПКЖ-904В, выпускаемые конверсионными предприятиями. Принцип работы прибора заключается в том, что порционный объем масла с контролируемой скоростью и температурой проходит через фотодатчик с высокими разрешающими характеристиками. Фотодатчик улавливает и фиксирует количество загрязнений и результат выдает на монитор. На мониторе показывается число инородных частиц в каждом контролируемом диапазоне их размеров. По результатам контроля класс чистоты жидкости выбирается из табл. 5.3 (ГОСТ 17216-71 "Промышленная чистота. Классы чистоты жидкостей").
Таблица 5.3