
- •Федеральное агентство по образованию
- •Предисловие
- •1. Естественно-научная и гуманитарная формы культуры. Научный метод
- •1.1. Естественно-научная и гуманитарная формы культуры
- •1.2. Научный метод
- •Контрольные вопросы
- •2. Физические концепции описания природы
- •2.1. Корпускулярная и континуальная концепции описания природы
- •2.1.1. Концепции строения материи и развития материального мира
- •2.1.2. Развитие представлений о природе света. Корпускулярно-волновой дуализм
- •2.2. Порядок и беспорядок в природе, детерминированный хаос
- •2.3. Структурные уровни организации материи
- •2.3.1. Микромир
- •2.3.2. Макромир
- •2.3.3. Мегамир
- •2.4. Пространство и время
- •2.4.1. Единство и многообразие свойств пространства и времени
- •2.4.2. Принцип причинности
- •2.4.3. Необратимость – неустранимое свойство реальности. Стрела времени
- •2.4.4. Современные взгляды на пространство и время
- •2.5. Принципы относительности
- •2.5.1. Принцип относительности в классической механике
- •2.5.2. Специальная теория относительности
- •2.5.3. Общая теория относительности
- •2.6. Принципы симметрии и законы сохранения
- •2.6.1. Симметрия: понятие, формы и свойства
- •2.6.2. Принципы симметрии и законы сохранения
- •2.6.3. Диалектика симметрии и асимметрии
- •2.7. Взаимодействие, близкодействие, дальнодействие
- •2.7.1. Концепции близкодействия и дальнодействия
- •2.7.2. Фундаментальные типы взаимодействий
- •2.8. Состояние, принципы суперпозиции, неопределенности, дополнительности
- •2.8.1. Принцип неопределенности
- •2.8.2. Принцип дополнительности
- •2.8.3. Принцип суперпозиции
- •2.9. Динамические и статистические закономерности в природе
- •2.10. Законы сохранения энергии в макроскопических процессах
- •2.10.1. Формы энергии
- •2.10.2. Закон сохранения энергии для механических процессов
- •2.10.3. Всеобщий закон сохранения и превращения энергии
- •2.10.4. Закон сохранения энергии в термодинамике
- •2.11. Принцип возрастания энтропии
- •2.11.1. Понятие энтропии
- •2.12. Основные космологические теории эволюции Вселенной
- •3. Химические концепции описания природы
- •3.1. Развитие учения о составе вещества
- •3.2. Развитие учения о структуре молекул
- •3.3. Развитие учения о химических процессах
- •3.3.1. Энергетика химических процессов и систем
- •3.3.2. Реакционная способность веществ
- •3.3.3. Химическое равновесие. Принцип Ле Шателье
- •3.4. Развитие представлений об эволюционной химии
- •4. Геологические концепции описания природы
- •4.1. Внутреннее строение и история образования Земли
- •4.1.1. Внутреннее строение Земли
- •4.1.2. История геологического строения Земли
- •4.2. Современные концепции развития геосферных оболочек
- •4.2.1. Концепция глобальной геологической эволюции Земли
- •4.2.2. История формирования геосферных оболочек
- •4.3. Литосфера как абиотическая основа жизни
- •4.3.1. Понятие литосферы
- •4.3.2. Экологический функции литосферы
- •4.3.3. Литосфера как абиотическая среда
- •5. Биологические концепции описания природы
- •5.1. Особенности биологического уровня организации материи
- •5.1.1. Уровни организации живой материи
- •5.1.2. Свойства живых систем
- •5.1.3. Химический состав, строение и воспроизведение клеток
- •5.1.4. Биосфера и ее структура
- •5.1.5. Функции живого вещества биосферы
- •5.1.6. Круговорот веществ в биосфере
- •5.2. Принципы эволюции, воспроизводства и развития живых систем
- •5.2.1. Основные эволюционные учения
- •5.2.3. Микро- и макроэволюция. Факторы эволюции
- •5.2.4. Направления эволюционного процесса
- •5.2.5. Основные правила эволюции
- •5.3. Происхождение жизни на Земле
- •5.3.1. Условия возникновения жизни при биохимической эволюции
- •5.3.2. Механизм возникновения жизни
- •5.3.3. Начальные этапы развития жизни на Земле
- •5.3.4. Основные этапы развития биосферы
- •5.4. Многообразие живых организмов – основа организации и устойчивости биосферы
- •5.4.1. Система органического мира Земли
- •Неклеточные формы
- •Клеточные формы Надцарство Прокариоты
- •Надцарство Эукариоты
- •5.4.2. Экологические факторы. Структура и функционирование экологических систем
- •5.4.3. Глобальные экологические проблемы. Концепции устойчивого развития
- •5.5. Генетика и эволюция
- •5.5.1. Генетические признаки и носители наследственной информации
- •5.5.2. Основные генетические процессы. Биосинтез белка
- •5.5.3. Основные законы генетики
- •5.5.4. Наследственная и ненаследственная изменчивость
- •5.5.7. Генная инженерия и клонирование как факторы дальнейшей эволюции
- •Контрольные вопросы
- •6. Человек: происхождение, физиология, здоровье
- •6.1.2. Физиологические особенности человека
- •6.1.3. Здоровье человека
- •Группировка факторов риска и их значение для здоровья
- •6.1.4. Эмоции. Творчество
- •6.1.5. Работоспособность
- •7. Человек, биосфера и космические циклы
- •7.1. Биоэтика
- •7.1.1. Противоречия современной цивилизации
- •7.1.2. Понятие биоэтики и ее принципы
- •7.1.3. Медицинская биоэтика
- •7.2. Биосфера и космические циклы
- •7.3. Биосфера и ноосфера
- •7.4. Современное естествознание и экология
- •7.5. Экологическая философия
- •7.6. Планетарное мышление
- •7.6. Ноосфера
- •Контрольные вопросы
- •8. Проблемы самоорганизации материи и универсальный эволюционизм
- •8.1. Самоорганизация в живой и неживой природе
- •8.1.1. Пространственные диссипативные структуры
- •8.1.2. Временные диссипативные структуры
- •8.1.3. Химическая основа морфогенеза
- •8.1.4. Самоорганизация в живой природе
- •8.2.5. Самоорганизация в неравновесных системах
- •8.1.6. Типы процессов самоорганизации
- •8.2. Принципы универсального эволюционизма
- •8.3. Самоорганизация в микромире. Формирование элементного состава вещества материи
- •8.4. Самоорганизация в живой и неживой природе
- •8.5. Концепции эволюционного естествознания
- •8.5.1 Структурность и целостность в природе. Фундаментальность понятия целостности
- •8.5.2. Принципы целостности современного естествознания
- •8.5.3. Самоорганизация в природе в терминах параметров порядка
- •Контрольные вопросы
- •9. Путь к единой культуре. Синергетическая парадигма фундаментальности
- •9. 1. Методология постижения открытого нелинейного мира
- •9.2. Чему «учат» концепции современного естествознания?
- •9.3. Основные черты современного естествознания
- •9.4. Принципы синергетики, эволюционная триада и синергетическая среда в постижении природы
- •9.5. Принципы нелинейного образа мира
- •9.6. От автоколебаний к самоорганизации
- •9.7. Формирование инновационной культуры
- •Глоссарий
- •Список литературы
- •Приложение
- •(Для студентов дневного, заочного и дистанционного обучения)
- •Оглавление
- •Концепции современного естествознания Учебник
- •445677, Г. Тольятти, ул. Гагарина, 4.
2.5.3. Общая теория относительности
В СТО законы формулируются для инерциальных систем, движущихся с постоянной скоростью. В ОТО рассматриваются любые системы отсчета, в том числе и движущиеся с ускорением. Таким образом, ОТО обобщила СТО также на ускоренные системы. Главное приложение ОТО нашла в изучении движения ускоренных тел в гравитационных полях. Иногда ОТО называют теорией тяготения, или гравитации, поэтому она нашла наибольшее применение в вопросах космогонии.
Из ОТО был получен ряд важных выводов:
1) свойства пространства-времени зависят от движущейся материи, в частности от массы тел. вблизи, тел, обладающих значительной массой, пространство-время искривляется, так что в гравитационном поле распределенных масс пространство становится неевклидовым, а ход времени вблизи тел замедляется;
2) луч света должен искривляться в поле тяготения;
3) частота света в результате действия поля тяготения дол: изменяться. В результате этого эффекта линии солнечного света, под действием гравитационного поля Солнца должны смещаться в сторону красного спектра по сравнению со спектрами соответсвующих земных источников.
Все это было настолько принципиально ново, что для утверждения ОТО нужна была ее тщательная экспериментальная проверка.
Вскоре нашло подтверждение отклонение луча света в гравитационном поле Солнца, которое было обнаружено во время солнечного затмения 29 мая 1919 г. в полном согласии с предсказанием ОТО.
Красное смещение в спектрах небесных тел также было обнаружено в 1923—1926 гг. при изучении Солнца, а в 1925 г. — при наблюдении спектра спутника Сириуса.
Экспериментальное подтверждение выводов ОТО явилось ее триумфом. ОТО произвела переворот в космологии. На ее основе появились различные модели Вселенной.
2.6. Принципы симметрии и законы сохранения
2.6.1. Симметрия: понятие, формы и свойства
Понятие симметрии. Как известно, в физике имеется целый ряд законов сохранения, например закон сохранения массы вещества, энергии, количества движения, момента количества движения, электрического заряда.
Законы сохранения в науке играют особую роль. Они отражают стабильность природы. Закон сохранения энергии обусловливает постоянство энергии, закон сохранения импульса определяет незыблемость движения, неуничтожимость поступательного движения, закон сохранения момента импульса – незыблемость вращательного движения, закон сохранения электрического заряда – кулоновское взаимодействие, которое, наряду с гравитационным, слабым и сильным взаимодействиями, определяет структуру мира. Поэтому принципиально важно знать причину появления в физике этих законов.
В математике известен целый ряд так называемых инвариантных преобразований (например, в механике – преобразования Галилея, в электродинамике – преобразования Лоренца). В результате инвариантных преобразований Галилея сохраняются законы механики Ньютона, а в результате преобразований Лоренца в электродинамике сохраняется вид уравнений Максвелла в различных инерциальных системах координат
Во всех перечисленных случаях – различного рода физических процессах и математических преобразованиях – некоторые ветчины или параметры остаются неизменными. Оказывается, что тем законам в физике или преобразованиям в математике соответствует некоторая симметрия.
С другой стороны, установление некоторой симметрии в физике и математике ведет к установлению новых законов сохранения или инвариантных преобразований. Поэтому выявление и установление симметрии – одна из наиболее эффективных методологических основ открытия новых законов сохранения в природе. Особенно успешно подобный путь познания законов сохранения используется в области изучения физики микромира, физики элементарных частиц, где исследования прямыми методами затруднены в силу малых размеров физических объектов.
В связи с исключительной важностью принципов симметрии рассмотрим подробнее, что понимается под симметрией и почему она играет столь важную роль в современной науке. Что же такое симметрия?
Симметрия (от греч. – соразмерность) в широком смысле – инвариантность (неизменность) структуры, свойств, формы материального объекта относительно его преобразований.
Согласно современным представлениям, симметрию можно определить примерно так: симметричным называется такой предмет, который можно как-то изменять, получая в результате то же, с чего начали (Р. Фейнман).
Таким образом, симметрия предполагает неизменность объекта (каких-либо свойств объекта) по отношению к каким-либо преобразованиям или операциям, выполняемым над объектом.
Понятие симметрии имеет определенную «структуру», состоящую из трех факторов:
наличие объекта или явления, симметрия которого рассматривается;
процедура изменения (преобразования), по отношению к которому рассматривается симметрия;
установление инвариантности (неизменности, сохранения) каких-либо свойств объекта, выражающей рассматриваемую симметрию.
Подчеркнем, что инвариантность существует не сама по себе, не вообще, а лишь по отношению к определенным преобразованиям. С другой стороны, изменение (преобразование) представляет интерес постольку, поскольку что-то при этом сохраняется. Иными словами, без изменений не имеет смысла рассматривать сохранение, равно как без сохранения исчезает интерес к изменениям.
Формы симметрии. Симметрия выражает сохранение чего-либо каких-либо изменениях, другими словами, сохранение чего-либо, несмотря на изменения. Таким образом, понятие симметрии основывается на на диалектике сохранения и изменения. В физике общепринято выделять две формы симметрии: геометрическую и динамическую.
Симметрии, выражающие свойства пространства и времени, относят к геометрической форме симметрии.
Примерами геометрических симметрии являются: однородное пространства и времени, изотропность пространства, пространственная четность, эквивалентность инерциальных систем отсчета.
Симметрии, непосредственно не связанные со свойствами пространства и времени, выражающие свойства определенных физических взаимодействий, относят к динамической форме симметрии.
Примерами динамических симметрии являются симметрии электрического заряда. Вообще говоря, к динамическим симметриям относят симметрии внутренних свойств объектов и процессов. Так что геометрические и динамические симметрии можно рассматривать как внешние и внутренние симметрии.
К основным формам геометрической симметрии, прежде всего, относятся:
зеркальная симметрия (симметрия отражения);
поворотная симметрия (центральная симметрия);
трансляционная симметрия (симметрия повторения).
Зеркальной называют симметрию, имеющую плоскость, линию, или временной раздел двух совершенно одинаковых относительно, друг друга частей одного целого (например, цветной узор крыльев бабочки).
Поворотная симметрия предполагает наличие некоторого центра, относительно которого происходит многократный поворот одного итого же структурного фрагмента. В зависимости от повторяющегося кругового сектора а (в угловых градусах) определяется порядок поворотной симметрии п. Например, для снежинки с α = 60° порядок поворотной симметрии п = 6.
Трансляционной симметрией называется многократное повторение одного и того же фрагмента структуры в пространстве или во времени. Примером трансляционной симметрии может служить любой орнамент.
Примером симметрии в неживой природе являются кристаллические структуры твердых тел. В 1890 г. русский ученый Фёдоров описал все возможные сочетания элементов в пространстве, причем доказал, что таких пространственных групп симметрии – 230. Используя математический аппарат, Фёдоров как бы пересчитал все возможные пространственные решетки задолго до того, как с помощью рентгеноструктурного анализа была подтверждена истинность этих расчетов.
Свойства симметрии. Особое внимание к вопросам симметрии было привлечено после того, как немецкий математик Э. Нётер сформулировала в 1918 г. фундаментальную теорему теоретической физики, установившую связь между симметрией свободного пространства, симметрией времени и законами сохранения в механике.
Пространство можно считать свободным, если вблизи нет тел большой массы. Таковым является пространство на значительном расстоянии от Земли и других планет и звезд.
Важным свойством свободного пространства являются однородность и изотропность. Под однородностью пространства понимают тот факт, что в этом пространстве нет особых точек, обладающих особыми свойствами. Из однородности пространства вытекает закон сохранения импульса, из изотропности пространства – закон сохранения момента импульса.
Под однородностью времени понимается тот факт, что любые явления, происходящие в разное время, но при одних и тех же условиях, протекают совершенно одинаково. Из этого утверждения вытекает закон сохранения энергии.
Важным подтверждением универсальной значимости законов сохранения является то, что они вытекают из самых общих представлений о симметрии, с одной стороны, а также законов движения и взаимодействий – с другой.
В частности, Э. Нётер при доказательстве своей знаменитой теоремы провела исследование широко используемого в аналитической механике интеграла действия:
где L (q, q, t) – функция Лагранжа, с помощью которой описывается некоторая система; q,q,t – соответственно обобщенные координаты (скорости) и время. В соответствии с вариационным принципом действие S имеет экстремум вблизи истинной траектории, вариация действия вдоль истинной траектории остается неизменной, т.е. δS = 0. Вариации действия δS зависят от вариации времени δt и вариации координат δq. Дифференцируя подинтегральное выражение по t и q и приравнивая его к нулю, поскольку δS = 0, имеем сумму двух дифференциалов
Если рассматривать только изменение по времени, то получим, что энергия системы (выраженная через функцию Лагранжа и ее производные) есть величина постоянная. Тем самым симметрии преобразования времени следует закон сохранения механической (кинетической плюс потенциальной) энергии.
Если преобразование не затрагивает времени (δt = 0), а учитывается только однородный пространственный сдвиг (δq=0), то получим в качестве сохраняющейся величины вектор импульса материальной системы (который следует из преобразованной функции Лагранжа). Аналогично выводится закон сохранения момента импульса. Кроме того, во всех процессах, происходящих в мире элементарных частиц, выполняется также закон сохранения электрического заряда. Принцип симметрии, лежащий в основе этого закона сохранения, оказывается более тонким, нежели рассмотренные выше симметрии физических законов относительно пространственно-временных преобразований, выражающихся в виде законов сохранения энергии, импульса, момента импульса.
Закон сохранения электрического заряда является следствием так называемой калибровочной инвариантности. Калибровочная инвариантность – один из важнейших принципов теории поля. Можно показать, что если записать интеграл действия S для системы «заряд–поле» и провести калибровочное преобразование, то действие остается неизменным, а вариация действия будет равна нулю, если заряд является постоянной величиной.
Инвариантность действия при преобразовании калибровки будет иметь место при условии сохранения заряда, т.е. симметрия калибровочного преобразования полей напрямую связана с законом сохранения заряда. Эта общая закономерность справедлива для полей любого характера.
Исследование реакций с участием элементарных частиц и античастиц и процессов их распада привело к открытию некоторых новых свойств симметрии, в том числе симметрии относительно зарядового сопряжения. Если в уравнении какой-либо реакции каждую частицу заменить на античастицу, то получится уравнение, описывающее новую реакцию. Эта операция называется зарядовым сопряжением.
Еще большее значение симметрия играет в квантовой механике. Если здесь установлен принцип какой-либо симметрии, то окажется, что он всегда позволяет вывести соответствующий закон сохранения.
Возникает вопрос, почему симметрия играет такую исключительную роль в установлении законов сохранения, какое значение она имеет в отражении свойств самой природы. Для этого необходимо обратиться к истории изучения вопроса о симметрии в природе.