- •Гагарина. Л.Г., Федоров а.Р., Федоров п.А. Введение в архитектуру проектирования программного обеспечения Москва
- •Оглавление
- •5.11. Паттерны grasp
- •Глава 1. Архитектура как форма концептуального существования по
- •1.1. Определения архитектуры по и ее значимость
- •1.2. Место архитектурных решений
- •1.3. Роль архитектурных решений
- •1.4. Архитектурные концептуальные схемы. Определение и ретроспектива
- •Глава 2. Нормативные практики архитектурного описания по
- •2.1. Основные понятия
- •2.2. Содержание стандарта
- •2.3. Представления схемы ieee-1471
- •Глава 3. Рациональный процесс архитектурного моделирования
- •3.1. Архитектурные парадигмы
- •3.2. Примеры архитектурных стилей и моделей
- •Глава 4. Сравнительное сопоставление архитектурных видов
- •4.1. Сопоставление систем видов
- •4.2. Примеры систем видов
- •Языки описания архитектуры
- •Глава 5. Проектирование с учетом будущих изменений.
- •5.1. Что такое паттерн проектирования.
- •5.2. Как решать задачи проектирования с помощью паттернов
- •3. Зависимость от аппаратной и программной платформ.
- •5.4. Порождающие паттерны
- •5.4.1. Паттерн Фабричный метод (Factory Method) - уровень класса
- •Классический вариант фабричного метода, когда интерфейс фабричных методов объявляется в независимом классе-фабрике, а их реализация определяется конкретными подклассами этого класса (Рис. 33).
- •Реализация паттерна Factory Method на основе обобщенного конструктора
- •Void info() {
- •Void info() {
- •Void info() {
- •Int main()
- •V.Push_back( Warrior::createWarrior( Infantryman_id));
- •V.Push_back( Warrior::createWarrior( Archer_id));
- •V.Push_back( Warrior::createWarrior( Horseman_id));
- •Void info() {
- •Void info() {
- •Void info() {
- •Int main()
- •5.4.2. Паттерн Одиночка (Singleton) - уровень объекта
- •Классическая реализация Singleton
- •If(!p_instance)
- •Singleton Мэйерса
- •Улучшенная версия классической реализации Singleton
- •Void initialize( Singleton* p );
- •Void SingletonDestroyer::initialize( Singleton* p ) {
- •If(!p_instance) {
- •Использование нескольких взаимозависимых одиночек
- •Int main()
- •5.4.3. Паттерн Абстрактная фабрика (Abstract Factory) - уровень объекта
- •Пример кода для паттерна Abstract Factory
- •Void info() {
- •Int main()
- •5.4.4. Паттерн Строитель (Builder) - уровень объекта
- •Void info() {
- •Int main()
- •Infantryman
- •Infantryman
- •5.4.5. Паттерн Прототип (Prototype) - уровень объекта
- •Void info() {
- •Void info() {
- •5.4.6. Обсуждение порождающих паттернов
- •5.5. Структурные паттерны
- •5.5.1. Паттерн Адаптер, обертка (Adapter, wrapper)
- •Адаптер объекта применяет композицию объектов.
- •Int main()
- •Void adjust() {} // Настройка датчика (защищенный метод)
- •5.5.2. Паттерн Мост (Bridge)
- •Void log( string & str );
- •Достоинства паттерна Bridge
- •5.5.3. Паттерн компоновщик (Composite)
- •Описание паттерна Composite
- •Virtual void addUnit(Unit* p) {
- •Int main()
- •Virtual CompositeUnit* getComposite() {
- •Void addUnit(Unit* p);
- •Достоинства паттерна Composite
- •Недостатки паттерна Composite
- •5.5.4. Паттерн декоратор (Decorator , wrapper, обертка)
- •Реализация паттерна Decorator
- •Int width, height;
- •5.5.5. Паттерн фасад (Facade)
- •Void submitNetworkRequest()
- •If (_engineer.CheckOnStatus())
- •5.5.6. Паттерн приспособленец (Flyweight)
- •Структура паттерна приспособленец (Flyweight)
- •Icon(char *fileName)
- •Icon *FlyweightFactory::_icons[];
- •5.5.7 Паттерн заместитель (Proxy, surrogate, суррогат)
- •Void draw()
- •Int balance;
- •5.5.8. Обсуждение структурных паттернов
- •5.6. Паттерны поведения
- •5.6.1. ПаттернЦепочка обязанностей (Chain of Responsibility)
- •Void setNext(Base *n)
- •5.6.2. Паттерн Command (команда)
- •Реализация паттерна Command
- •5.6.3. Паттерн Interpreter (интерпетатор)
- •Совместное использование паттернов Interpreter и Template Method
- •Int interpret(char*); // interpret() for client
- •Virtual void interpret(char *input, int &total)
- •Int index;
- •If (!strncmp(input, nine(), 2))
- •Virtual char one(){}
- •Int items[10];
- •Int main()
- •5.6.5. Паттерн Mediator (посредник)
- •Virtual void changed();
- •Void Widget::changed()
- •Int main()
- •5.6.6. Паттерн Memento (хранитель)
- •Int _state;
- •Void static redo()
- •Int main()
- •Integer: 11
- •5.6.7. Паттерн Observer (наблюдатель)
- •Int value;
- •5.6.8. Паттерн State
- •Void setCurrent(State *s)
- •5.6.9. Паттерн Strategy
- •Void compress( const string & file ) {
- •5.6.10. Паттерн Template Method (шаблонный метод)
- •Void a()
- •V.Visit(this);
- •V.Visit(this);
- •V.Visit(this);
- •Int main()
- •5.6.12. Обсуждение паттернов поведения
- •5.7. Дальнейшее развитие идеи паттернов проектирования
- •5.8. Архитектурные системные паттерны
- •5.9. Паттерны управления
- •5.9.1. Паттерны централизованного управления
- •5.10. Паттерны интеграции корпоративных информационных систем
- •5.10.1. Структурные паттерны интеграции
- •5.10.2. Паттерны по методу интеграции
- •5.10.3. Паттерны интеграции по типу обмена данными
- •5.12. Антипаттерны (anti-patterns)
- •Глава 6. Архитектура и характеристики качества
- •6.1. Специфика требований к качеству по
- •6.2. Подход к построению архитектуры с позиций качества
- •6.3. Подходы к оцениванию архитектуры
Virtual void addUnit(Unit* p) {
assert( false);
}
virtual ~Unit() {}
};
// Primitives
class Archer: public Unit
{
public:
virtual int getStrength() {
return 1;
}
};
class Infantryman: public Unit
{
public:
virtual int getStrength() {
return 2;
}
};
class Horseman: public Unit
{
public:
virtual int getStrength() {
return 3;
}
};
// Composite
class CompositeUnit: public Unit
{
public:
int getStrength() {
int total = 0;
for(int i=0; i<c.size(); ++i)
total += c[i]->getStrength();
return total;
}
void addUnit(Unit* p) {
c.push_back( p);
}
~CompositeUnit() {
for(int i=0; i<c.size(); ++i)
delete c[i];
}
private:
std::vector<Unit*> c;
};
// Вспомогательная функция для создания легиона
CompositeUnit* createLegion()
{
// Римский легион содержит:
CompositeUnit* legion = new CompositeUnit;
// 3000 тяжелых пехотинцев
for (int i=0; i<3000; ++i)
legion->addUnit(new Infantryman);
// 1200 легких пехотинцев
for (int i=0; i<1200; ++i)
legion->addUnit(new Archer);
// 300 всадников
for (int i=0; i<300; ++i)
legion->addUnit(new Horseman);
return legion;
}
Int main()
{
// Римская армия состоит из 4-х легионов
CompositeUnit* army = new CompositeUnit;
for (int i=0; i<4; ++i)
army->addUnit( createLegion());
cout << "Roman army damaging strength is "
<< army->getStrength() << endl;
// …
delete army;
return 0;
Следует обратить внимание на один важный момент. Абстрактный базовый класс Unit объявляет интерфейс для добавления новых боевых единиц addUnit(), несмотря на то, что объектам примитивных типов (Archer, Infantryman, Horseman) подобная операция не нужна. Сделано это в угоду прозрачности системы в ущерб ее безопасности. Клиент знает, что объект типа Unit всегда будет иметь метод addUnit(). Однако его вызов для примитивных объектов считается ошибочным и небезопасным.
Можно сделать систему более безопасной, переместив метод addUnit() в составной объект CompositeUnit. Однако при этом возникает следующая проблема: мы не знаем, содержит ли объект Unit метод addUnit().
Рассмотрим следующий фрагмент кода.
class Unit
{
public:
Virtual CompositeUnit* getComposite() {
return 0;
}
// …
};
// Composite
class CompositeUnit: public Unit
{
public:
Void addUnit(Unit* p);
CompositeUnit* getComposite() {
return this;
}
// …
};
В абстрактном базовом классе Unit появился новый виртуальный метод getComposite() с реализацией по умолчанию, которая возвращает 0. Класс CompositeUnit переопределяет этот метод, возвращая указатель на самого себя. Благодаря этому методу можно запросить у компонента его тип. Если он составной, то можно применить операцию addUnit().
if (unit->getComposite())
{
unit->getComposite()->addUnit( new Archer);
Результаты применения паттерна Composite
Достоинства паттерна Composite
В систему легко добавлять новые примитивные или составные объекты, так как паттерн Composite использует общий базовый класс Component;
Код клиента имеет простую структуру – примитивные и составные объекты обрабатываются одинаковым образом;
Паттерн Composite позволяет легко обойти все узлы древовидной структуры.
