
- •Гагарина. Л.Г., Федоров а.Р., Федоров п.А. Введение в архитектуру проектирования программного обеспечения Москва
- •Оглавление
- •5.11. Паттерны grasp
- •Глава 1. Архитектура как форма концептуального существования по
- •1.1. Определения архитектуры по и ее значимость
- •1.2. Место архитектурных решений
- •1.3. Роль архитектурных решений
- •1.4. Архитектурные концептуальные схемы. Определение и ретроспектива
- •Глава 2. Нормативные практики архитектурного описания по
- •2.1. Основные понятия
- •2.2. Содержание стандарта
- •2.3. Представления схемы ieee-1471
- •Глава 3. Рациональный процесс архитектурного моделирования
- •3.1. Архитектурные парадигмы
- •3.2. Примеры архитектурных стилей и моделей
- •Глава 4. Сравнительное сопоставление архитектурных видов
- •4.1. Сопоставление систем видов
- •4.2. Примеры систем видов
- •Языки описания архитектуры
- •Глава 5. Проектирование с учетом будущих изменений.
- •5.1. Что такое паттерн проектирования.
- •5.2. Как решать задачи проектирования с помощью паттернов
- •3. Зависимость от аппаратной и программной платформ.
- •5.4. Порождающие паттерны
- •5.4.1. Паттерн Фабричный метод (Factory Method) - уровень класса
- •Классический вариант фабричного метода, когда интерфейс фабричных методов объявляется в независимом классе-фабрике, а их реализация определяется конкретными подклассами этого класса (Рис. 33).
- •Реализация паттерна Factory Method на основе обобщенного конструктора
- •Void info() {
- •Void info() {
- •Void info() {
- •Int main()
- •V.Push_back( Warrior::createWarrior( Infantryman_id));
- •V.Push_back( Warrior::createWarrior( Archer_id));
- •V.Push_back( Warrior::createWarrior( Horseman_id));
- •Void info() {
- •Void info() {
- •Void info() {
- •Int main()
- •5.4.2. Паттерн Одиночка (Singleton) - уровень объекта
- •Классическая реализация Singleton
- •If(!p_instance)
- •Singleton Мэйерса
- •Улучшенная версия классической реализации Singleton
- •Void initialize( Singleton* p );
- •Void SingletonDestroyer::initialize( Singleton* p ) {
- •If(!p_instance) {
- •Использование нескольких взаимозависимых одиночек
- •Int main()
- •5.4.3. Паттерн Абстрактная фабрика (Abstract Factory) - уровень объекта
- •Пример кода для паттерна Abstract Factory
- •Void info() {
- •Int main()
- •5.4.4. Паттерн Строитель (Builder) - уровень объекта
- •Void info() {
- •Int main()
- •Infantryman
- •Infantryman
- •5.4.5. Паттерн Прототип (Prototype) - уровень объекта
- •Void info() {
- •Void info() {
- •5.4.6. Обсуждение порождающих паттернов
- •5.5. Структурные паттерны
- •5.5.1. Паттерн Адаптер, обертка (Adapter, wrapper)
- •Адаптер объекта применяет композицию объектов.
- •Int main()
- •Void adjust() {} // Настройка датчика (защищенный метод)
- •5.5.2. Паттерн Мост (Bridge)
- •Void log( string & str );
- •Достоинства паттерна Bridge
- •5.5.3. Паттерн компоновщик (Composite)
- •Описание паттерна Composite
- •Virtual void addUnit(Unit* p) {
- •Int main()
- •Virtual CompositeUnit* getComposite() {
- •Void addUnit(Unit* p);
- •Достоинства паттерна Composite
- •Недостатки паттерна Composite
- •5.5.4. Паттерн декоратор (Decorator , wrapper, обертка)
- •Реализация паттерна Decorator
- •Int width, height;
- •5.5.5. Паттерн фасад (Facade)
- •Void submitNetworkRequest()
- •If (_engineer.CheckOnStatus())
- •5.5.6. Паттерн приспособленец (Flyweight)
- •Структура паттерна приспособленец (Flyweight)
- •Icon(char *fileName)
- •Icon *FlyweightFactory::_icons[];
- •5.5.7 Паттерн заместитель (Proxy, surrogate, суррогат)
- •Void draw()
- •Int balance;
- •5.5.8. Обсуждение структурных паттернов
- •5.6. Паттерны поведения
- •5.6.1. ПаттернЦепочка обязанностей (Chain of Responsibility)
- •Void setNext(Base *n)
- •5.6.2. Паттерн Command (команда)
- •Реализация паттерна Command
- •5.6.3. Паттерн Interpreter (интерпетатор)
- •Совместное использование паттернов Interpreter и Template Method
- •Int interpret(char*); // interpret() for client
- •Virtual void interpret(char *input, int &total)
- •Int index;
- •If (!strncmp(input, nine(), 2))
- •Virtual char one(){}
- •Int items[10];
- •Int main()
- •5.6.5. Паттерн Mediator (посредник)
- •Virtual void changed();
- •Void Widget::changed()
- •Int main()
- •5.6.6. Паттерн Memento (хранитель)
- •Int _state;
- •Void static redo()
- •Int main()
- •Integer: 11
- •5.6.7. Паттерн Observer (наблюдатель)
- •Int value;
- •5.6.8. Паттерн State
- •Void setCurrent(State *s)
- •5.6.9. Паттерн Strategy
- •Void compress( const string & file ) {
- •5.6.10. Паттерн Template Method (шаблонный метод)
- •Void a()
- •V.Visit(this);
- •V.Visit(this);
- •V.Visit(this);
- •Int main()
- •5.6.12. Обсуждение паттернов поведения
- •5.7. Дальнейшее развитие идеи паттернов проектирования
- •5.8. Архитектурные системные паттерны
- •5.9. Паттерны управления
- •5.9.1. Паттерны централизованного управления
- •5.10. Паттерны интеграции корпоративных информационных систем
- •5.10.1. Структурные паттерны интеграции
- •5.10.2. Паттерны по методу интеграции
- •5.10.3. Паттерны интеграции по типу обмена данными
- •5.12. Антипаттерны (anti-patterns)
- •Глава 6. Архитектура и характеристики качества
- •6.1. Специфика требований к качеству по
- •6.2. Подход к построению архитектуры с позиций качества
- •6.3. Подходы к оцениванию архитектуры
Адаптер объекта применяет композицию объектов.
Участники
- Target (Shape) - целевой: - определяет зависящий от предметной области интерфейс, которым пользуется Client;
- Client (DrawingEditor) - клиент: - вступает во взаимоотношения с объектами, удовлетворяющими интерфейсу Target;
- Adaptee (Textview) - адаптируемый: - определяет существующий интерфейс, который нуждается в адаптации;
- Adapter (Text Shape) - адаптер: - адаптирует интерфейс Adaptee к интерфейсу Target.
Отношения
Клиенты вызывают операции экземпляра адаптера Adapter. В свою очередь адаптер вызывает операции адаптируемого объекта или класса Adaptee, который и выполняет запрос.
Результаты
Результаты применения адаптеров объектов и классов различны.
Адаптер класса:
адаптирует Adaptee к Target, перепоручая действия конкретному классу Adaptee. Поэтому данный паттерн не будет работать, если мы захотим одновременно адаптировать класс и его подклассы;
позволяет адаптеру Adapter заместить некоторые операции адаптируемого класса Adaptee, так как Adapter есть не что иное, как подкласс Adaptee;
вводит только один новый объект. Чтобы добраться до адаптируемого класса, не нужно никакого дополнительного обращения по указателю.
Адаптер объектов:
позволяет одному адаптеру Adapter работать со многим адаптируемыми объектами Adaptee, то есть с самим Adaptee и его подклассами (если таковые имеются). Адаптер может добавить новую функциональность сразу всем адаптируемым объектам;
затрудняет замещение операций класса Adaptee. Для этого потребуется породить от Adaptee подкласс и заставить Adapter ссылаться на этот подкласс, а не на сам Adaptee.
Адаптеры сильно отличаются по тому объему работы, который необходим для адаптации интерфейса Adaptее к интерфейсу Target. Это может быть как простейшее преобразование, например изменение имен операций, так и поддержка совершенно другого набора операций. Объем работы зависит от того, насколько сильно отличаются друг от друга интерфейсы целевого и адаптируемого классов.
На первом шаге реализации необходимо найти ≪узкий≫ интерфейс для Adaptee, то есть наименьшее подмножество операций, позволяющее выполнить адаптацию. ≪Узкий≫ интерфейс, состоящий всего из пары итераций, легче адаптировать, чем интерфейс из нескольких десятков операций.
≪Узкий≫ интерфейс можно реализовать разными способами.
1. Использование абстрактных операций. Подклассы должны реализовывать эти абстрактные операции и адаптировать иерархически структурированный объект.
2. Использование объектов-уполномоченных. При таком подходе запросы на доступ к иерархической структуре переадресуются объекту-уполномоченному.
Классическая реализация паттерна Adapter
Приведем реализацию паттерна Adapter. Для примера выше адаптируем показания температурного датчика системы климат-контроля, переведя их из градусов Фаренгейта в градусы Цельсия (предполагается, что код этого датчика недоступен для модификации).
#include <iostream>
// Уже существующий класс температурного датчика окружающей среды
class FahrenheitSensor
{
public:
// Получить показания температуры в градусах Фаренгейта
float getFahrenheitTemp() {
float t = 32.0;
// ... какой то код
return t;
}
};
class Sensor
{
public:
virtual ~Sensor() {}
virtual float getTemperature() = 0;
};
class Adapter : public Sensor
{
public:
Adapter( FahrenheitSensor* p ) : p_fsensor(p) {
}
~Adapter() {
delete p_fsensor;
}
float getTemperature() {
return (p_fsensor->getFahrenheitTemp()-32.0)*5.0/9.0;
}
private:
FahrenheitSensor* p_fsensor;
};