
- •Гагарина. Л.Г., Федоров а.Р., Федоров п.А. Введение в архитектуру проектирования программного обеспечения Москва
- •Оглавление
- •5.11. Паттерны grasp
- •Глава 1. Архитектура как форма концептуального существования по
- •1.1. Определения архитектуры по и ее значимость
- •1.2. Место архитектурных решений
- •1.3. Роль архитектурных решений
- •1.4. Архитектурные концептуальные схемы. Определение и ретроспектива
- •Глава 2. Нормативные практики архитектурного описания по
- •2.1. Основные понятия
- •2.2. Содержание стандарта
- •2.3. Представления схемы ieee-1471
- •Глава 3. Рациональный процесс архитектурного моделирования
- •3.1. Архитектурные парадигмы
- •3.2. Примеры архитектурных стилей и моделей
- •Глава 4. Сравнительное сопоставление архитектурных видов
- •4.1. Сопоставление систем видов
- •4.2. Примеры систем видов
- •Языки описания архитектуры
- •Глава 5. Проектирование с учетом будущих изменений.
- •5.1. Что такое паттерн проектирования.
- •5.2. Как решать задачи проектирования с помощью паттернов
- •3. Зависимость от аппаратной и программной платформ.
- •5.4. Порождающие паттерны
- •5.4.1. Паттерн Фабричный метод (Factory Method) - уровень класса
- •Классический вариант фабричного метода, когда интерфейс фабричных методов объявляется в независимом классе-фабрике, а их реализация определяется конкретными подклассами этого класса (Рис. 33).
- •Реализация паттерна Factory Method на основе обобщенного конструктора
- •Void info() {
- •Void info() {
- •Void info() {
- •Int main()
- •V.Push_back( Warrior::createWarrior( Infantryman_id));
- •V.Push_back( Warrior::createWarrior( Archer_id));
- •V.Push_back( Warrior::createWarrior( Horseman_id));
- •Void info() {
- •Void info() {
- •Void info() {
- •Int main()
- •5.4.2. Паттерн Одиночка (Singleton) - уровень объекта
- •Классическая реализация Singleton
- •If(!p_instance)
- •Singleton Мэйерса
- •Улучшенная версия классической реализации Singleton
- •Void initialize( Singleton* p );
- •Void SingletonDestroyer::initialize( Singleton* p ) {
- •If(!p_instance) {
- •Использование нескольких взаимозависимых одиночек
- •Int main()
- •5.4.3. Паттерн Абстрактная фабрика (Abstract Factory) - уровень объекта
- •Пример кода для паттерна Abstract Factory
- •Void info() {
- •Int main()
- •5.4.4. Паттерн Строитель (Builder) - уровень объекта
- •Void info() {
- •Int main()
- •Infantryman
- •Infantryman
- •5.4.5. Паттерн Прототип (Prototype) - уровень объекта
- •Void info() {
- •Void info() {
- •5.4.6. Обсуждение порождающих паттернов
- •5.5. Структурные паттерны
- •5.5.1. Паттерн Адаптер, обертка (Adapter, wrapper)
- •Адаптер объекта применяет композицию объектов.
- •Int main()
- •Void adjust() {} // Настройка датчика (защищенный метод)
- •5.5.2. Паттерн Мост (Bridge)
- •Void log( string & str );
- •Достоинства паттерна Bridge
- •5.5.3. Паттерн компоновщик (Composite)
- •Описание паттерна Composite
- •Virtual void addUnit(Unit* p) {
- •Int main()
- •Virtual CompositeUnit* getComposite() {
- •Void addUnit(Unit* p);
- •Достоинства паттерна Composite
- •Недостатки паттерна Composite
- •5.5.4. Паттерн декоратор (Decorator , wrapper, обертка)
- •Реализация паттерна Decorator
- •Int width, height;
- •5.5.5. Паттерн фасад (Facade)
- •Void submitNetworkRequest()
- •If (_engineer.CheckOnStatus())
- •5.5.6. Паттерн приспособленец (Flyweight)
- •Структура паттерна приспособленец (Flyweight)
- •Icon(char *fileName)
- •Icon *FlyweightFactory::_icons[];
- •5.5.7 Паттерн заместитель (Proxy, surrogate, суррогат)
- •Void draw()
- •Int balance;
- •5.5.8. Обсуждение структурных паттернов
- •5.6. Паттерны поведения
- •5.6.1. ПаттернЦепочка обязанностей (Chain of Responsibility)
- •Void setNext(Base *n)
- •5.6.2. Паттерн Command (команда)
- •Реализация паттерна Command
- •5.6.3. Паттерн Interpreter (интерпетатор)
- •Совместное использование паттернов Interpreter и Template Method
- •Int interpret(char*); // interpret() for client
- •Virtual void interpret(char *input, int &total)
- •Int index;
- •If (!strncmp(input, nine(), 2))
- •Virtual char one(){}
- •Int items[10];
- •Int main()
- •5.6.5. Паттерн Mediator (посредник)
- •Virtual void changed();
- •Void Widget::changed()
- •Int main()
- •5.6.6. Паттерн Memento (хранитель)
- •Int _state;
- •Void static redo()
- •Int main()
- •Integer: 11
- •5.6.7. Паттерн Observer (наблюдатель)
- •Int value;
- •5.6.8. Паттерн State
- •Void setCurrent(State *s)
- •5.6.9. Паттерн Strategy
- •Void compress( const string & file ) {
- •5.6.10. Паттерн Template Method (шаблонный метод)
- •Void a()
- •V.Visit(this);
- •V.Visit(this);
- •V.Visit(this);
- •Int main()
- •5.6.12. Обсуждение паттернов поведения
- •5.7. Дальнейшее развитие идеи паттернов проектирования
- •5.8. Архитектурные системные паттерны
- •5.9. Паттерны управления
- •5.9.1. Паттерны централизованного управления
- •5.10. Паттерны интеграции корпоративных информационных систем
- •5.10.1. Структурные паттерны интеграции
- •5.10.2. Паттерны по методу интеграции
- •5.10.3. Паттерны интеграции по типу обмена данными
- •5.12. Антипаттерны (anti-patterns)
- •Глава 6. Архитектура и характеристики качества
- •6.1. Специфика требований к качеству по
- •6.2. Подход к построению архитектуры с позиций качества
- •6.3. Подходы к оцениванию архитектуры
Классическая реализация Singleton
Рассмотрим наиболее часто встречающуюся реализацию паттерна Singleton.
// Singleton.h
class Singleton
{
private:
static Singleton * p_instance;
// Конструкторы и оператор присваивания недоступны клиентам
Singleton() {}
Singleton( const Singleton& );
Singleton& operator=( Singleton& );
public:
static Singleton * getInstance() {
If(!p_instance)
p_instance = new Singleton();
return p_instance;
}
};
// Singleton.cpp
#include "Singleton.h"
Singleton* Singleton::p_instance = 0;
Клиенты запрашивают единственный объект класса через статическую функцию-член getInstance(), которая при первом запросе динамически выделяет память под этот объект и затем возвращает указатель на этот участок памяти. Впоследcтвии клиенты должны сами позаботиться об освобождении памяти при помощи оператора delete.
Последняя особенность является серьезным недостатком классической реализации шаблона Singleton. Так как класс сам контролирует создание единственного объекта, было бы логичным возложить на него ответственность и за разрушение объекта. Этот недостаток отсутствует в реализации Singleton, впервые предложенной Скоттом Мэйерсом.
Singleton Мэйерса
// Singleton.h
class Singleton
{
private:
Singleton() {}
Singleton( const Singleton&);
Singleton& operator=( Singleton& );
public:
static Singleton& getInstance() {
static Singleton instance;
return instance;
}
};
Внутри getInstance() используется статический экземпляр нужного класса. Стандарт языка программирования C++ гарантирует автоматическое уничтожение статических объектов при завершении программы. Досрочного уничтожения и не требуется, так как объекты Singleton обычно являются долгоживущими объектами. Статическая функция-член getInstance() возвращает не указатель, а ссылку на этот объект, тем самым, затрудняя возможность ошибочного освобождения памяти клиентами.
Приведенная реализация паттерна Singleton использует так называемую отложенную инициализацию (lazy initialization) объекта, когда объект класса инициализируется не при старте программы, а при первом вызове getInstance(). В данном случае это обеспечивается тем, что статическая переменная instance объявлена внутри функции - члена класса getInstance(), а не как статический член данных этого класса. Отложенную инициализацию, в первую очередь, имеет смысл использовать в тех случаях, когда инициализация объекта представляет собой дорогостоящую операцию и не всегда используется.
К сожалению, у реализации Мэйерса есть недостатки: сложности создания объектов производных классов и невозможность безопасного доступа нескольких клиентов к единственному объекту в многопоточной среде.
Улучшенная версия классической реализации Singleton
С учетом всего вышесказанного классическая реализация паттерна Singleton может быть улучшена.
// Singleton.h
class Singleton; // опережающее объявление
class SingletonDestroyer
{
private:
Singleton* p_instance;
public:
~SingletonDestroyer();
Void initialize( Singleton* p );
};
class Singleton
{
private:
static Singleton* p_instance;
static SingletonDestroyer destroyer;
protected:
Singleton() { }
Singleton( const Singleton& );
Singleton& operator=( Singleton& );
~Singleton() { }
friend class SingletonDestroyer;
public:
static Singleton& getInstance();
};
// Singleton.cpp
#include "Singleton.h"
Singleton * Singleton::p_instance = 0;
SingletonDestroyer Singleton::destroyer;
SingletonDestroyer::~SingletonDestroyer() {
delete p_instance;
}