
- •В.А. Петров, а.В. Посохова методы измерения и гигиеническая оценка некоторых физических факторов среды обитания человека
- •Общие положения
- •1. Основные методические регламенты реализации образовательных программ по теме учебно-методического пособия
- •2) Ситуационные задачи по расчету и оценке эффективной температуры (эт) или эквивалентно-эффективной температуры (ээт) с помощью номограммы.
- •2. Некоторые термины, понятия, определения
- •3. Основы терморегуляции организма человека
- •Температуры воздуха
- •4. Основные последствия воздействия неблагоприятных метеорологических и микроклиматических факторов воздушной среды и их профилактика
- •4.1. Перегревание организма
- •Степени перегревания организма
- •Температуры, зарегистрированной при поступлении в больницу
- •Массы тела человека нормальной массы
- •Некоторые признаки, характеризующие периоды (стадии) тепловой адаптации человека к высокой тепловой нагрузке
- •4.2. Охлаждение организма
- •4.3. Прогнозирование состояния здоровья людей в зависимости от температуры наружного воздуха
- •Поправка коэффициента рк значению температуры воздуха
- •5. Методы измерения температуры воздуха и оценки температурных условий
- •5.2. Изучение температурных условий
- •Результаты изучения температурных условий в учебной аудитории
- •6. Гигиеническое значение, методы измерения и оценки влажности воздуха
- •6.1. Гигиеническое значение и оценка влажности воздуха
- •Максимальное напряжение водяных паров при разных температурах воздуха,
- •Максимальное напряжение водяных паров надо льдом при температурах ниже 0о,
- •6.2. Измерение влажности воздуха
- •Величины психрометрических коэффициентов а в зависимости от скорости движения воздуха
- •(При скорости движения воздуха 0,2 м/с)
- •7. Гигиеническое значение, методы измерения и оценки направления и скорости движения воздуха
- •7.1. Гигиеническое значение движения воздуха
- •7.2. Приборы для определения направления и скорости движения воздуха
- •Скорость движения воздуха (при условии скорости менее 1 м/с) с учетом поправок на температуру воздуха при определении с помощью кататермометра
- •Скорость движения воздуха (при условии скорости более 1 м/с) при определении с помощью кататермометра
- •Шкала скорости движения воздуха в баллах
- •8. Гигиеническое значение, методы измерения и оценки теплового (инфракрасного) излучения
- •8.1. Гигиеническое значение теплового (инфракрасного) излучения
- •Соотношение прямой и рассеянной солнечной радиации, %
- •Пределы переносимости человеком тепловой радиации
- •8.2. Приборы для измерения и методы оценки лучистой энергии
- •Относительная степень черноты некоторых материалов, в долях единицы
- •9. Методы комплексной оценки метеорологических условий и микроклимата помещений различного назначения
- •9.1. Методы комплексной оценки метеорологических условий и микроклимата при положительных температурах
- •Различные сочетания температуры, влажности и подвижности воздуха, соответствующие эффективной температуре 18,8
- •Результирующей температур по основной шкале
- •Результирующей температур по нормальной шкале
- •9.2. Методы комплексной оценки метеорологических условий и микроклимата при отрицательных температурах
- •Вспомогательная таблица для определения теплового самочувствия (условной температуры) методом, рекомендуемым для населения
- •Ветрохолодовой индекс (вхи)
- •10. Методы физиолого-гигиенической оценки теплового состояния организма человека
- •Тепловое самочувствие военнослужащих до и после проведения коррекции рационов питания с целью повышения резистентности организма к холодовому воздействию
- •Потери воды организмом человека потоотделением (г/ч) при различных температурах и относительной влажности воздуха
- •11. Физиолого-гигиеническая оценка атмосферного давления
- •11.1. Общие гигиенические аспекты значения атмосферного давления
- •Характеристика форм декомпрессионной болезни по тяжести заболевания
- •Зоны высоты над уровнем моря в зависимости от реакции организма человека
- •11.2. Единицы измерения и приборы для измерения атмосферного давления
- •Единицы измерения атмосферного давления
- •Соотношение единиц измерения барометрического давления
- •Приборы для измерения атмосферного давления.
- •12. Гигиеническое значение, методы измерения интенсивности ультрафиолетового излучения и выбор доз искусственного облучения
- •12.1. Гигиеническое значение ультрафиолетовой радиации
- •12.2. Методы определения интенсивности ультрафиолетовой радиации и ее биодозы при профилактическом и лечебном облучении
- •Основные характеристики приборов серии «Аргус»
- •Время получения одной биодозы от различных источников излучения
- •12.3. Применение искусственных источников коротковолнового ультрафиолетового излучения для обеззараживания объектов внешней среды
- •13. Аэроионизация; ее гигиеническое значение и методы измерения
- •14. Приборы для измерения показателей метеорологических и микроклиматических условий с совмещенными функциями
- •Режимы работы прибора ивтм -7
- •Требования к измерительным приборам
- •15. Нормирование некоторых физических факторов среды обитания в различных условиях жизнедеятельности человека
- •Характеристика отдельных категорий работ
- •Допустимые величины интенсивности теплового облучения поверхности тела
- •Критерии допустимого теплового состояния человека (верхняя граница)*
- •Критерии допустимого теплового состояния человека (нижняя граница)*
- •Критерии предельно допустимого теплового состояния человека (верхняя граница)* для продолжительности не более трех часов за рабочую смену
- •Критерии предельно допустимого теплового состояния человека (верхняя граница)* для продолжительности не более одного часа за рабочую смену
- •Допустимая продолжительность пребывания работающих в охлаждающей среде при теплоизоляции одежды 1 кло*
- •Гигиенические требования к теплозащитным показателям
- •(Суммарное тепловое сопротивление) головных уборов, рукавиц и обуви
- •Применительно к метеорологическим условиям различных климатических регионов
- •(Физическая работа категории iIа, время непрерывного пребывания на холоде – 2 часа)
- •Значения тнс-индекса (оС), характеризующие микроклимат как допустимый в теплый период года при соответствующей регламентации продолжительности пребывания
- •Рекомендуемые величины интегрального показателя тепловой нагрузки среды
- •Классы условий труда по показателям микроклимата для рабочих помещений
- •Охлаждающим микроклиматом
- •Классы условий труда по показателю температуры воздуха, °с (нижняя граница), для открытых территорий в зимний период года применительно к категории работ Iб
- •Классы условий труда по показателю температуры воздуха, °с (нижняя граница), для открытых территорий в зимний период года применительно к категории работ iIа—iIб
- •Классы условий труда по показателю температуры воздуха, °с (нижняя граница) для неотапливаемых помещений применительно к категории работ Iб
- •Классы условий труда по показателю температуры воздуха, °с (нижняя граница) для неотапливаемых помещений применительно к категории работ Па—Пб
- •Взаимосвязь между средневзвешенной температуры кожи человека, его физиологическим состоянием и типом погоды и оценка типов погоды для отдыха, лечения и туризма
- •Характеристика классов погоды момента при положительной температуре воздуха
- •Характеристика классов погоды момента при отрицательной температуре воздуха
- •Физиолого-климатическая типизация погод теплого времени года
- •Журнал регистрации сведений о погодных условиях в______________
- •Оптимальные и допустимые нормы температуры, относительной влажности и скорости движения воздуха в помещениях жилых зданий
- •Гигиенические требования к параметрам микроклимата основных помещений закрытых плавательных бассейнов
- •Уровни уф-а излучения (400-315 нм)
- •2.2.4. Гигиена труда. Физические факторы
- •2. Нормируемые показатели аэроионного состава воздуха
- •3. Требования к проведению контроля аэроионного состава воздуха
- •4. Требования к способам и средствам нормализации аэроионного состава воздуха
- •Термины и определения
- •Библиографические данные
- •Классификация условий труда по аэроионному составу воздуха
- •16. Ситуационные задачи
- •16.1. Ситуационные задачи по расчету прогноза состояния здоровья людей в зависимости от температуры наружного воздуха
- •16.2. Ситуационные задачи по расчету количества ламп – источников ультрафиолетового излучения для дезинфекции воздуха
- •Ультрафиолетового облучения с помощью биодозиметра
- •16.4. Ситуационные задачи по определению количества эритемных ламп – источников ультрафиолетового излучения для облучательных установок
- •16.5. Ситуационные задачи по определению регламентов облучения ультрафиолетовым излучением в фотариях
- •17. Литература, нормативные и методические материалы
- •17.1. Библиография
- •17.2. Нормативные и методические документы
- •Гигиенические требования к аэроионному составу воздуха производственных и общественных помещений: СанПиН 2.2.4.1294-03
- •Гигиенические требования к размещению, устройству, оборудованию и эксплуатации больниц, родильных домов и других лечебных стационаров: СанПиН 2.1.3.1375-03.
- •Психрометрическая будка (будка Вильде) с закрытой психрометрической цинковой клеткой
- •Психрометрическая будка (будка Вильде, английская будка)
- •Вспомогательная величина а при определении средней радиационной температуры табличным методом в.В. Шиба
- •Вспомогательная величина в при определении средней радиационной температуры табличным методом в.В. Шиба
- •Нормальная шкала эффективных температур
Единицы измерения атмосферного давления
Обозначение единицы |
Соотношение с единицей системы СИ – паскалем (Па) и другими |
Миллиметр ртутного столба (мм рт. ст.) |
1 мм. рт. ст. = 133,322 Па |
Миллиметр водного столба (мм вод. ст.) |
1 мм вод. ст. = 9,807 Па |
Атмосфера техническая (ат) |
1 ат = 9,807 104 Па |
Атмосфера физическая (атм) |
1 атм = 1,033 ат = 1,013 104 Па |
Тор |
1 тор = 1 мм рт. ст. |
Миллибар (мб) |
1 мб = 0,7501 мм рт. ст. = 100 Па |
Таблица 24
Соотношение единиц измерения барометрического давления
Единицы |
Па |
атм |
мм рт. ст. |
мб |
мм вод. ст. |
Паскаль, Па |
1 |
9,910-6 |
7,510-3 |
1,010-2 |
1,010-1 |
Атмосфера нормальная, атм |
1,013105 |
1 |
760 |
1013,3 |
10333 |
Миллиметр ртутного столба, мм рт. ст. |
133 |
1,310-3 |
1 |
1,33 |
13,6 |
Миллибар, мб |
100 |
9,910-4 |
7,510-1 |
1 |
10,2 |
Миллиметр водного столба, мм вод. ст. |
9,81 |
9,710-5 |
7,310-2 |
9,810-2 |
1 |
Из приведенных в таблицах 23 и 24 единиц измерения наибольшее распространение в России получили мм. рт. ст.имб. Для удобства пересчетов в необходимых случаях можно использовать следующее соотношение:
760 мм рт. ст.= 1013мб= 101300Па (36)
Более простой способ:
Мб = мм. рт. ст.(37)
Мм рт. ст. = мб(38)
Приборы для измерения атмосферного давления.
В гигиенических исследованиях применяются два типа барометров:
жидкостные барометры;
металлические барометры – анероидные.
Принцип работы различных модификаций жидкостных барометров основан на том, что атмосферное давление уравновешивает определенной высоты столб жидкости в запаянной с одного конца (верхнего) трубке. Чем меньше удельный вес жидкости, тем выше столб последней, уравновешиваемый давлением атмосферы.
Наибольшее распространение получили ртутные барометры, так как высокий удельный вес жидкой ртути позволяет сделать прибор более компактным, что объясняется уравновешиванием давления атмосферы менее высоким столбом ртути в трубке.
Используются три системы ртутных барометров:
чашечные;
сифонные;
сифонно-чашечные.
Указанные системы ртутных барометров схематически представлены на рисунке 35.
Станционные чашечные барометры (рисунок 35). В этих барометрах в чашку, заполненную ртутью, помещается запаянная сверху стеклянная трубка. В трубке над ртутью образуется так называемая торичеллиевая пустота. Воздух в зависимости от состояния обусловливает то или иное давление на ртуть, находящуюся в чашке. Таким образом, уровень ртути устанавливается на ту или иную высоту в стеклянной трубке. Именно данная высота будет уравновешивать давление воздуха на ртуть в чашке, а значит отражать атмосферное давление. Высоту уровня ртути, соответствующую атмосферному давлению, определяют по так называемой компенсированной шкале, имеющейся на металлической оправе барометра. Изготавливаются чашечные барометры со шкалами от 810 до 1110 мб и от 680 до 1110 мб. |
|
Рис. 35. Чашечный барометр(слева) А – шкала барометра; Б – винт; В – термометр; Г – чашечка со ртутью Ртутный сифонный барометр(справа) А – верхнее колено; В – нижнее колено; Д – нижняя шкала; Е – верхняя шкала; Н – термометр; а – отверстие в трубке |
В отдельных модификациях имеются две шкалы – в мм рт. ст. и мб. Десятые доли мм рт. ст. или мб отсчитываются по подвижной шкале – нониусу. Для этого необходимо винтом установить нулевое деление шкалы нониуса на одной линии с вершиной мениска ртутного столба, отсчитать число целых делений миллиметров ртутного столба по шкале барометра и число десятых до-лей миллиметра ртутного столба до первой отметки шкалы нониуса, совпадающей с делением основной шкалы.
Пример.Нулевое деление шкалы нониуса находится между 760 и 761 мм рт. ст. основной шкалы. Следовательно, число целых делений равно 760 мм рт. ст. К этой цифре необходимо прибавить число десятых долей миллиметра ртутного столба, отсчитанных по шкале нониуса. Первым с делением основной шкалы совпадает 4-е деление шкалы нониуса. Барометрическое давление равно 760 + 0,4 = 760,4 мм рт. ст.
Как правило, в чашечные барометры встроен термометр (ртутный или спиртовый в зависимости от предполагаемого диапазона температуры воздуха при исследованиях), так как для получения окончательного результата необходимо специальными расчетами привести давление к стандартным условиям температуры (0С) и барометрического давления (760 мм рт. ст.).
В чашечных экспедиционных барометрахперед наблюдением предварительно с помощью специального винта, расположенного в нижней части прибора, устанавливают уровень ртути в чашке на нулевую отметку.
Сифонные и сифонно-чашечные барометры (рисунок 35). В этих барометрах величина атмосферного давления измеряется по разнице высот ртутного столба в длинном (запаянном) и коротком (открытом) коленах трубки. Данный барометр позволяет производить измерение давления с точностью до 0,05мм рт. ст. При помощи винта в нижней части приборов уровень ртути в коротком (открытом) колене трубки приводят к нулевой точке, а затем отсчитывают показания барометра.
Сифонно-чашечный инспекторский барометр. Данный прибор имеет две шкалы: слева в мб и справа в мм рт. ст. Для определения десятых долей мм рт. ст. служит нониус. Найденные значения атмосферного давления, как и при работе с другими жидкостными барометрами, необходимо с помощью вычислений или специальных таблиц привести к 0С.
На метеорологических станциях в показания барометров вводят не только температурную поправку, но и так называемую постоянную поправку: инструментальную и поправку на силу тяжести.
Устанавливать барометры следует в отдалении или изолированно от источников теплового излучения (солнечное излучение, нагревательные приборы), а также в отдалении от дверей и окон.
Металлический барометр-анероид (рисунок 36). Данный прибор особенно удобен при проведении исследований в экспедиционных условиях. Однако этот барометр перед использованием должен быть выверен по более точному ртутному барометру.
Рис. 36. Барометр-анероид |
Рис. 37. Барограф |
Принцип устройства и действия барометра-анероида очень прост. Металлическая подушечка (коробка) с гофрированными (для большей эластичности) стенками, из которой удален воздух до остаточного давления 50-60 мм рт. ст., под воздействием давления воздуха изменяет свой объем и в результате деформируется. Деформация передается по системе рычажков стрелке, которая и указывает на циферблате атмосферное давление. На циферблате барометра анероида вмонтирован изогнутой формы термометр в связи с необходимостью, как указывалось выше, приведения результатов измерения к 0С. Градуировка циферблата может быть в мб или в мм рт. ст. В некоторых модификациях барометра-анероида имеются две шкалы – как в мб, так и в мм рт. ст.
Анероид-высотомер (альтиметр). В измерении высоты по уровню атмосферного давления заложена закономерность, согласно которой между давлением воздуха и высотой имеется зависимость, весьма близкая к линейной. То есть при подъеме на высоту пропорционально снижается атмосферное давление.
Данный прибор предназначен для измерения атмосферного давления именно на высоте и имеет две шкалы. На одной из них нанесены величины давления в мм рт. ст. или мб, на другой – высота в метрах. На летательных аппаратах применяют альтиметры с циферблатом, на котором по шкале определяется высота полета.
Барограф (барометр-самописец).Данный прибор предназначен для непрерывной регистрации атмосферного давления. В гигиенической практике применяются металлические (анероидные) барографы (рисунок 37). Под влиянием изменений атмосферного давления пакет соединенных вместе анероидных коробок в результате деформации оказывает влияние на систему рычажков, а через них на специальное перо с незасыхающими специальными чернилами. При увеличении атмосферного давления анероидные коробки сжимаются и рычажок с пером поднимается кверху. При уменьшении давления анероидные коробки с помощью помещенных внутри их пружин расширяются и перо чертит линию книзу. Запись давления в виде непрерывной линии вычерчивается пером на градуированной в мм рт. ст. или мб бумажной ленте, помещенной на цилиндрический вращающийся с помощью механического завода барабан. Используются барографы с недельным или суточным заводом с соответствующими градуированными лентами в зависимости от цели, задач и характера исследований. Выпускаются барографы с электрическим приводом, вращающим барабан. Однако на практике данная модификация прибора менее удобна, так как ограничивается его использование в экспедиционных условиях. Для устранения температурных влияний на показания барографа в них вставляется биметаллические компенсаторы, автоматически осуществляющие коррекцию (поправку) движения рычажков в зависимости от температуры воздуха. Перед началом работы рычажок с пером с помощью специального винта устанавливается в исходное положение, соответствующее времени, обозначенном на ленте и на уровень давления, измеренный точным ртутным барометром.
Чернила для записи барограмм можно приготовить по следующей прописи:
|
- 200 мл |
|
- 2,4 г |
|
- 3 г |
|
- 10 мл |
Приведение объема воздуха к нормальным условиям (760 мм рт. ст., 0С). Данный аспект измерения барометрического давления весьма важен при измерении концентраций загрязняющих веществ в воздухе. Игнорирование указанного аспекта может обусловить значительные ошибки в расчетах концентраций вредных веществ, которые могут достигать 30 и более процентов.
Приведение объема воздуха к нормальным условиям производится по формуле:
(39)
V0 |
|
V1 |
|
273 |
|
В |
|
760 |
|
t |
|
Пример. Для измерения концентрации пыли в воздухе через бумажный фильтр с помощью электрического аспиратора пропущено 200 л воздуха. Температура воздуха в период его аспирации составляла- +26С, барометрическое давление - 752 мм рт. ст. Необходимо привести объем воздуха к нормальным условиям, то есть к 0С и 760 мм рт. ст.
Подставляем в формулу Х значения соответствующих параметров примера и рассчитываем искомый объем воздуха при нормальных условиях:
л.
Таким образом, при расчете концентрации пыли в воздухе необходимо учитывать объем воздуха именно 180,69 л, а не 200л.
Для упрощения расчетов объема воздуха
при нормальных условиях можно пользоваться
поправочными коэффициентами на
температуру и давление (таблица 25) или
рассчитанными готовыми величинами
формулы 39
и
(таблица 26).
Таблица 25
Поправочные коэффициенты на температуру и давление для приведения объема воздуха к нормальным условиям
(температура 0оС, барометрическое давление 760 мм рт. ст.)
tоС |
Барометрическое давление, мм рт. ст. | |||||||
700 |
710 |
720 |
730 |
740 |
750 |
760 |
770 | |
10 |
0,889 |
0,901 |
0,914 |
0,927 |
0,939 |
0,952 |
0,965 |
0,977 |
12 |
0,882 |
0,895 |
0,908 |
0,920 |
0,933 |
0,945 |
0,958 |
0,971 |
14 |
0,876 |
0,889 |
0,901 |
0,914 |
0,926 |
0,939 |
0,951 |
0,964 |
16 |
0,870 |
0,883 |
0,895 |
0,907 |
0,920 |
0,932 |
0,945 |
0,957 |
18 |
0,864 |
0,876 |
0,889 |
0,901 |
0,914 |
0,926 |
0,938 |
0,951 |
20 |
0,858 |
0,870 |
0,883 |
0,895 |
0,907 |
0,920 |
0,932 |
0,944 |
22 |
0,852 |
0,865 |
0,877 |
0,889 |
0,901 |
0,913 |
0,925 |
0,938 |
24 |
0,847 |
0,859 |
0,871 |
0,883 |
0,895 |
0,907 |
0,919 |
0,931 |
Окончание таблицы 25
tоС |
Барометрическое давление, мм рт. ст. | |||||||
700 |
710 |
720 |
730 |
740 |
750 |
760 |
770 | |
26 |
0,841 |
0,853 |
0,865 |
0,877 |
0,889 |
0,901 |
0,913 |
0,925 |
28 |
0,835 |
0,847 |
0,859 |
0,871 |
0,883 |
0,895 |
0,907 |
0,919 |
30 |
0,830 |
0,842 |
0,854 |
0,865 |
0,877 |
0,889 |
0,901 |
0,913 |
32 |
0,824 |
0,836 |
0,848 |
0,860 |
0,872 |
0,883 |
0,895 |
0,907 |
34 |
0,819 |
0,831 |
0,842 |
0,854 |
0,866 |
0,878 |
0,889 |
0,901 |
35 |
0,816 |
0,828 |
0,840 |
0,851 |
0,863 |
0,875 |
0,886 |
0,898 |
Таблица 26
Коэффициенты для приведения объемов воздуха к нормальным условиям
(температура 0оС, барометрическое давление 760 мм рт. ст.)
tоC |
|
В, мм рт. ст. |
|
tоC |
|
В, мм рт. ст. |
|
-4 |
1,015 |
741 |
0,975 |
16 |
0,945 |
761 |
1,001 |
-3 |
1,011 |
742 |
0,976 |
17 |
0,941 |
762 |
1,003 |
-2 |
1,007 |
743 |
0,978 |
18 |
0,938 |
763 |
1,004 |
-1 |
1,004 |
744 |
0,979 |
19 |
0,935 |
764 |
1,005 |
0 |
1,000 |
745 |
0,980 |
20 |
0,932 |
765 |
1,007 |
1 |
0,996 |
746 |
0,982 |
21 |
0,929 |
766 |
1,008 |
2 |
0,993 |
747 |
0,983 |
22 |
0,925 |
767 |
1,009 |
3 |
0989, |
748 |
0,984 |
23 |
0,922 |
768 |
1,010 |
4 |
0,983 |
749 |
0,986 |
24 |
0,919 |
769 |
1,012 |
5 |
0,982 |
750 |
0,987 |
25 |
0,916 |
770 |
1,013 |
6 |
0,979 |
751 |
0,988 |
26 |
0,913 |
771 |
1,014 |
7 |
0,975 |
752 |
0,989 |
27 |
0,910 |
772 |
1,016 |
8 |
0,972 |
753 |
0,991 |
28 |
0,907 |
773 |
1,017 |
9 |
0,968 |
754 |
0,992 |
29 |
0,904 |
774 |
1,018 |
10 |
0,965 |
755 |
0,993 |
30 |
0,901 |
775 |
1,020 |
11 |
0,961 |
756 |
0,995 |
31 |
0,898 |
776 |
1,021 |
12 |
0,958 |
757 |
0,996 |
32 |
0,895 |
777 |
1,022 |
13 |
0,955 |
758 |
0,997 |
33 |
0,892 |
778 |
1,024 |
14 |
0,951 |
759 |
0,999 |
34 |
0,889 |
779 |
1,025 |
15 |
0,948 |
760 |
1,000 |
35 |
0,886 |
780 |
1,026 |