
- •1) Кинематика сложного движения точки. Абсолютное, относительное и переносное движение.
- •2) Теорема о сложении скоростей в сложном движении точки.
- •3) Теорема о сложении ускорений в случае переносного поступательного движения.
- •4) Теорема Кориолиса о сложении ускорений.
- •6)Какое движение твердого тела называется плоскопараллельным?
- •7) Уравнения движения плоской фигуры.
- •8) Разложение движения плоской фигуры на поступательное вместе с полюсом и вращательное вокруг полюса.
- •9) Независимость угловой скорости и углового ускорения фигуры от выбора полюса.
- •14) Определение ускорения любой точки фигуры при плоском движении.
- •15) Мгновенный центр ускорений.
- •16). Сложное движение твердых тел.
- •17). Сложение вращений тела вокруг пересекающихся осей.
- •18) Сложение вращений тела вокруг параллельных осей.
- •19). Кинематический расчет планетарных механизмов.
- •1). Основные понятия и определения: масса, материальная точка, сила; постоянные и переменные силы.
- •2) Законы классической механики (законы Галилея-Ньютона).
- •3) Инерциальная система отсчета. Задачи динамики.
- •4)Дифференциальные уравнения движения материальной точки в декартовых прямоугольных
- •5)Дифференциальные уравнения движения материальной точки в проекциях на оси естественного трехгранника.
- •6) Две основные задачи динамики для материальной точки, их решение.
- •7) Общие теоремы динамики для материальной точки их значение.
- •8) Количество движения точки. Элементарный импульс и импульс силы за конечный промежуток времени.
- •9) Теорема об изменении количества движения точки в дифференциальной и конечной формах.
- •10) Момент количества движения точки относительно центра и оси. Относительно центра
- •11) Теорема об изменении момента количества движения точки. Сохранение момента количества движения точки в случае центральной силы.
- •12) Кинетическая энергии точки.
- •13) Теорема об изменении кинетической энергии точки в дифференциальной и конечной формах.
- •14) Элементарная работа силы; ее аналитическое выражение. Мощность.
- •15) Работа силы на конечном пути.
- •28) Вынужденные колебания при гармонической вынуждающей силе.
- •29) Вынужденные колебания при гармонической вынуждающей силе и сопротивлении, пропорциональном скорости.
- •30) Коэффициент динамичности, резонанс.
7) Общие теоремы динамики для материальной точки их значение.
Для решения многих задач динамики удобно пользоваться так называемыми общими теоремами, являющимися следствиями основного закона динамики.
Количество движения, кинетическая энергия точки, импульс силы, работа силы, мощность.
Значение состоит в том, что они устанавливают наглядные зависимости между основными динамическими характеристиками движения материальных тел и открывают тем самым новые возможности исследования механических движений, широко применяемые в инженерной практике. Кроме того, теоремы позволяют изучать отдельные, практически важные стороны данного явления, не изучая явление в целом. Применение теорем избавляет от необходимости проделывать для каждой задачи те операции интегрирования, которые раз и навсегда производятся при выводе этих теорем; тем самым упрощая процесс решения.
8) Количество движения точки. Элементарный импульс и импульс силы за конечный промежуток времени.
Количеством движения мат точки называется вектор, имеющий направление вектора скорости, и модуль, равный произведению массы точки m на модуль скорости её движения v.
Элементарный импульс сил- этовекторная величина, равная произведению вектора силы на элементарный промежуток времени. Это векторная величина имеющая направление силы (ds=F·dt)
Импульс силы за конечный промежуток времени.
9) Теорема об изменении количества движения точки в дифференциальной и конечной формах.
В диф. Форме.
–количество
движения материальной точки,
– элементарный импульс силы.
– элементарное изменение количества
движения материальной точки равно
элементарному импульсу силы, приложенной
к этой точке (теорема в дифференц-ной
форме) или
–
производная по времени от количества
движения материальной точки равна
равнодействующей сил, приложенных к
этой точке.
В конечной(интегральной )форме:
Проинтегрируем:
– изменение количества движения
материальной точки занекоторый
промежуток времени равно
геометрической сумме
импульсов
сил, приложенных
к этой точке, за тот же промежуток
времени.
–
импульс силы за промежуток времени
[0,t]. В проекциях на оси координат:
и т.д.
10) Момент количества движения точки относительно центра и оси. Относительно центра
Моментом количества движения мат.точки относительно центра называется вектор, модуль которого = произведению модуля количества движения на кратчайшее расстояние от центра до линии действия вектора количества движения, I-й плоскости в которой лежат упоминающиеся линии и направленный так, что бы глядя от его конца видеть движение, совершающееся против часовой стрелки. mц(mυ)=r·(mυ)
Момент количества движения точки относительно оси.
Моментом количества движения мат.точки относительно оси называется скалярная величена = произведению проекции количества движения мат.точки на плоскость перпендикулярную данной оси и на кратчайшее расстояние от точки пересечения данной оси с этой плоскостью до прямой, на которой лежит прямая вектора количества движения.
mz(mυ)=±h(mυxy) (h-плечо вектора mυ)