
- •3. Электростатическое поле. Напряженность поля. Принцип суперпозиции полей.
- •5. Теорема Остроградского-Гаусса для электростатического поля в вакууме.
- •6.Электростатиическое поле равномерно заряженной пластины и конденсатора.
- •7. Электростатическое поле равномерно заряженного бесконечного цилиндра.
- •8. Электростатическое поле равномерно заряженной сферы.
- •11.Взаимосвязь между напряженностью и потенциалом электростатического поля. Эквипотенциальные поверхности.
- •12.Типы диэлектриков. Поляризация диэлектриков.
- •15. Проводники в электростатическом поле. Емкость уединенного проводника.
- •16. Конденсатор. Емкость конденсатора. Соединение конденсаторов в батарею.
- •18. Электрический ток и его характеристики. Классическая электронная теория электропроводности металлов.
- •20. Закон Джоуля - Ленца в дифференциальной форме.
- •22. Эдс и напряжение. Закон Ома в интегральной форме.
- •23. Электрическое сопротивление. Соединение сопротивлений.
- •24. Закон Джоуля- Ленца в интегральной форме.
- •25. Разветвленные цепи. Правила Кирхгофа.
- •26. Природа проводимости газов. Самостоятельный и несамостоятельный газовые разряды. Типы газовых самостоятельных разрядов и их применение.
- •28. Магнитное поле. Магнитная индукция. Принцип суперпозиции. Закон Био-Савара-Лапласа. Правило буравчика.
- •29. Расчет магнитного поля прямолинейного проводника с током. Расчет магнитного поля кругового проводника с током.
- •31. Магнитный момент витка с током. Магнитное поле движ-я электрического заряда
- •33. Действие магнитного поля на движущийся электрический заряд. Сила Лоренца. Движение заряженных частиц в магнитном поле.
- •34. Эффект Холла. Мгд-генератор. Масс-спектрограф. Циклотрон.
- •35. Магнитный поток. Теорема Остроградского-Гаусса для магнитного поля.
- •36. Работа по перемещению проводника и контура с током в магнитном поле.
- •37. Явление электромагнитной индукции. Закон электромагнитной индукции. Правило Ленца. Вывод закона электромагнитной индукции из закона сохранения энергии.
- •38. Заряд, проходящий через поперечное сечение цепи при электромагнитной индукции. Генератор переменного тока.
- •39. Поток самоиндукции. Индуктивность контура. Явление самоиндукции.
- •41. Взаимная индукция. Коэффициент взаимной индукции. Трансформатор.
- •40. Токи при размыкании и замыкании цепи.
- •42. Энергия магнитного поля. Объемная плотность энергии.
- •43. Магнитные моменты атомов. Гиромагнитное отношение. Атом в магнитном поле.
- •44. Диа- и парамагнетики в магнитном поле.
- •51. Дифференциальное уравнение гармонических колебаний пружинного маятника и его решение. Характеристики колебаний пружинного маятника.
- •47. Основы теории Максвелла. Вихревое электрическое поле.
- •48. Ток смещения. Опыт Эйхенвальда. Полный ток.
- •49. Уравнения Максвелла для электромагнитного поля.
- •50. Колебательные процессы. Виды колебаний. Свободные гармонические колебания и их характеристики.
- •52. Дифференциальное уравнение гармонических колебаний физического маятника и его решение. Характеристики колебаний физического маятника.
- •58. Затухающие механические колебания и их характеристики.
- •57.Сложение перпенд-х гарм-х колебаний одинаковой частоты. Фигуры Лиссажу.
- •61. Вынужденные колебания в колебательном контуре. Резонанс.
- •62. Переменный электрический ток. Активное, индуктивное и емкостное сопротивление в цепи переменного тока.
- •63. Мощность в цепи переменного тока.
- •64. Волновые процессы. Типы волн и их характеристики. Уравнение бегущей волны.
- •65. Принцип суперпозиции волн. Интерференция волн.
- •66. Стоячая волна. Уравнение стоячей волны и его анализ.
20. Закон Джоуля - Ленца в дифференциальной форме.
Закон Джоуля-Ленца в дифференциальной форме – объемная плотность тепловой мощности тока равна скалярному произведению векторов плотности тока и напряженности электрического поля.
.
где
w
—
удельная тепловая мощность тока.
21.
Закон Видемана-Франца. Затруднения
классической электронной теории
электропроводности
металлов.Зако́н
Видема́на
— Фра́нца — это физический закон,
утверждающий, что для металлов отношение
коэффициента теплопроводности K
к удельной электрической проводимости
σ
пропорционально температуре:
.
Затруднения классической электронной теории
А)затруднённое вычисление кооф-в В
Б)не объясняет характер зависимости
В)по классической теории теплоёмкость Ме-в должна определяться теплоёмкостью кристаллической решётки и газа.
22. Эдс и напряжение. Закон Ома в интегральной форме.
Электродвижущая сила (ЭДС) — физическая величина, характеризующая работу сторонних (непотенциальных) сил в источниках постоянного или переменного тока. В замкнутом проводящем контуре ЭДС равна работе этих сил по перемещению единичного положительного заряда вдоль контура.
ЭДС можно выразить через напряжённость электрического поля сторонних сил (Eex). В замкнутом контуре (L) тогда ЭДС будет равна:
,
где dl
— элемент длины контура.
ЭДС, так же как и напряжение, измеряется в вольтах.
Напряже́ние (разность потенциалов) между точками A и B — отношение работы электрического поля при переносе пробного электрического заряда из точки A в точку B к величине пробного заряда.
При этом считается, что перенос пробного заряда не изменяет распределения зарядов на источниках поля.Альтернативное определение (для электростатического поля) —
(интеграл от проекции поля на траекторию между точками A и B вдоль любой траектории, идущей из A в B)
Единицей измерения напряжения в системе СИ является Вольт.
Закон Ома для участка электрической цепи имеет вид:
U = RI где:
U — напряжение или разность потенциалов,
I — сила тока,
R — сопротивление.
Закон Ома также применяется ко всей цепи, но в несколько изменённой форме:
,
где:
έ— ЭДС цепи,
I — сила тока в цепи,
R — сопротивление всех элементов цепи,
r — внутреннее сопротивление источника питания.
23. Электрическое сопротивление. Соединение сопротивлений.
Электри́ческое
сопротивле́ние — мера способности тел
препятствовать прохождению через них
электрического тока. Сопротивлением
(резистором) также называют радиодеталь,
оказывающую электрическое сопротивление
току.
R — сопротивление;
U — разность электрических потенциалов на концах проводника, измеряется в вольтах;
I — ток, протекающий между концами проводника под действием разности потенциалов, измеряется в амперах. Сопротивление однородного проводника постоянного сечения зависит от свойств вещества проводника, его длины, сечения и вычисляется по формуле:
где ρ — удельное сопротивление вещества проводника, L — длина проводника, а S — площадь сечения.
Сопротивление однородного проводника
Послед-е
соединение сопротивленийR=R1+R2
I=I1=I2
Паралл. соединение сопротивлений U=U1=U2
.