
- •1. Предмет химии в ее связь с другими науками. Основные разделы химии, предмет их изучения. Значение химии в различных отраслях хозяйства
- •2. Основные понятия и законы химии. Закон эквивалентов. Понятие об атомной и молекулярной массе. Закон Авогадро. Уравнение состояния газов.
- •6. Периодический закон и периодическая система д.И. Менделеева Структура периодической системы (период, группа, подгруппа). Значение периодического закона и периодической системы.
- •4. Квантовые числа электронов. Распределение электронов по орбиталям. Принцип Паули. Порядок заполнения атомных орбиталей электронами.
- •7. Периодическое изменение свойств химических элементов. Атомные и ионные радиусы. Энергия ионизации. Сродство к электрону. Электроотрицательность.
- •8. Химическая связь. Основные типы и характеристики химической связи. Условия и механизм ее образования. Метод валентных связей. Валентность. Понятие о методе молекулярных орбиталей.
- •9. Водородная связь. Особые свойства воды и некоторых других соединений, способных образовывать водородную связь.
- •10.Донорно-акдепторная связь. Комплексные соединения. Комплексообразователь и лиганды. Заряд комплексообразователя и координационной сферы. Координационное число константы нестойкости.
- •12.Химическая термодинамика. Энергетика химических процессов. Внутренняя энергия и энтальпия. Термохимические уравнения. Теплота образования и разложения веществ.
- •13.Стандартные тепловые эффекты различных процессов. Основной закон термохимии (закон Гесса). Применение термохимических расчетов.
- •14.Химическое сродство. Энтропия. Ее изменение при химических процессах. Стандартные энтропии веществ. Методы расчета" изменения энтропии в ходе химической реакции.
- •16.Химическая кинетика. Факторы влияющие на скорость реакции, методы ее регулирования. Закон действующих масс. Константа скорости реакции. Кинетические уравнения реакций.
- •17.Энергия активации. Активированный комплекс. Энергетические схемы хода реакции. Температурная зависимость скорости реакций. Правило Вант-Гоффа,
- •18.Катализ и катализаторы. Гомогенный и гетерогенный катализ.
- •19.Химическое равновесие. Константа равновесия. Принцип Ле-Шателье Влияние на равновесие изменения температуры, давления» концентрации. Практическое применение принципа Ле-Шателье.
- •20. Дисперсные системы, их классификация, устойчивость и коагуляция. Колойдные и истинные растворы. Способы выражения состава растворов.
- •21.Растворимость газов, жидкостей и твердых веществ в жидкостях. Закон Генри. Закон распределения. Давление насыщенного пара растворителя над раствором. Первый закон Рауля.
- •22.Температура кристаллизации и температура кипения растворов неэлектролитов. Второй закон Рауля. Осмотическое давление. Закон Вант-Гоффа.
- •23.Электролиты. Электролитическая диссоциация. Степень и константа диссоциации, связь между ними. Активность и сила раствора
- •24 Свойство растворов электролитов. Изотонический коэффициент, его определение. Связь изотонического коэффициента со степенью диссоциации. Применение электрохимических процессов.
- •25.Вода. Природные воды, их обработка. Замкнутый водооборот. Водород, водородная энергетика.
- •26.Произведение растворимости. Электролитическая диссоциация воды. Ионное произведение воды. Водородный показатель. Методы определения концентрации ионов водорода
- •27.Окислительно-востановительные процессы. Составление уравнений окислительно-востановительных реакций. Метод электронного баланса. Направление окислительно-восстановительных реакций.
- •28.Электродные потенциалы. Механизм их возникновения. Двойной электрический слой. Уравнение Нернста. Ряд напряжений.
- •29.Гальванические элементы. Теория гальванических элементов.
- •30.Электролиз расплавов растворов. Правила электролиза с инертным анодом. Электролиз раствора с растворимым анодом.
- •31.Основные законы электролиза. Применение электролиза. Гальваностегия и гальванопластика. Электрохимическая обработка металлов. Аккумуляторы.
- •33.Методы защиты металлов от коррозии. Металлические защитные покрытия (анодные, катодные). Неметаллические покрытия. Электрохимические методы защиты от коррозии.
- •34.Общие свойства металлов. Металлическая связь. Тепло- и электропроводность. Физико-механические и химические свойства металлов.
- •35 Основные методы получения металлов, пиро-, гидро- и электрометаллургия. Методы рафинирования металлов. Зонная плавка, иодидный способ.
- •36.Основные типы металлических сплавов. Сталь. Чугун. Сплавы цветных металлов. Латунь. Бронза. Дюралюминий. Сплавы на основе свинца и олова. Их свойства и применение.
- •37. Основные электротехнические материалы. Медь. Алюминий. Олово. Их свойства и применение.
- •38. Высокомолекулярные соединения (вмс). Полимеры. Классификация. Методы получения. Полимеризация. Поликонденсация.
- •39. Форма, гибкость и структура макромолекул полимеров. Конформация и конфигурация. Атактические и стереорегулярные полимеры. Сополимеры и блоксополимеры. Надмолекулярная структура полимеров.
- •40. Агрегатные, физические и фазовые состояния полимеров. Физикомеханические и химические свойства полимеров.
7. Периодическое изменение свойств химических элементов. Атомные и ионные радиусы. Энергия ионизации. Сродство к электрону. Электроотрицательность.
Из рассмотрения физической сути периодического закона вытекает, что периодические изменения химических свойств элементов связаны с электронным строением атомов, которое в соответствии с законами волновой механики также изменяется периодически. Все периодические изменения химических свойств элементов, а также изменения разных свойств простых и сложных веществ связаны со свойствами атомных орбиталей.
Следующим важнейшим выводом, который следует из анализа данных, приведенных в таблице 6, является вывод о периодическом изменении характера заполнения электронами внешних энергетических уровней, что и вызывает периодические изменения химических свойств элементов и их соединений.
Атомный радиус — это радиус сферы, внутри которой заключено ядро атома и 95% плотности всего электронного облака, окружающего ядро. Это условное понятие, т.к. электронное облако атома не имеет четкой границы, оно позволяет судить о размерах атома.
Численные значения атомных радиусов разных химических элементов находят экспериментально, анализируя длины химических связей, т.е. расстояния между ядрами связанных между собой атомов. Радиусы атомов выражают обычно в нанометрах (нм), 1 нм = 10–9 м, пикометрах (пм), 1 пм = 10–12 м или ангстремах (A), 1 A = 10–10 м.
Зависимость атомных радиусов от заряда ядра атома Z имеет периодический характер. В пределах одного периода периодической системы химических элементов Д.И. Менделеева наибольшее значение атомного радиуса у атома щелочного металла. Далее с ростом Z значение радиуса уменьшается, достигает минимума у атома элемента VIIА группы, а затем скачком возрастает у атома инертного газа и далее еще больше — у атома щелочного металла следующего периода.
Иoнный радиус.
Радиусы ионов отличаются от атомных радиусов соответствующих элементов. Потеря атомами электронов приводит к уменьшению их эффективных размеров, а пpисоединение избыточных электронов — к увеличению. Поэтому радиус положительно заряженного иона (катиона) всегда меньше, а радиус отрицательно заряженного иона (аниона) всегда больше радиуса соответствующего электронейтрального атома. Так, радиус атома калия составляет 0,236 нм, а радиус иона K+ — 0,133 нм; радиусы атома хлора и хлорид-иона Сl– соответственно равны 0,099 и 0,181 нм. При этом радиус иона тем сильней отличается от радиуса атома, чем больше заряд иона. Например, радиусы атома хрома и ионов Cr2+ и Cr3+ составляют соответственно 0,127, 0,083 и 0,064 нм.
В пределах главной подгруппы радиусы ионов одинакового заряда, как и радиусы атомов, возрастают с увеличением заряда ядра
Энергия ионизации (мера проявления металлических свойств) — это энергия, необходимая для отрыва электрона от атома.
(Ca0- Ca2+ +
2е- -
Н).
Чем больше электронов на внешнем электронном слое, тем больше энергия ионизации. С увеличением радиуса атома энергия ионизации уменьшается. Этим объясняется уменьшение металлических свойств в периодах слева направо и увеличение металлических свойств в группах сверху вниз. Цезий (Cs) — самый активный металл.
Энергия сродства к электрону
(мера проявления неметаллических
свойств) - энергия, которая выделяется
в результате присоединения электрона
к атому (Сl0 +
1е- —>
Сl- + Н).
С увеличением числа электронов на
внешнем электронном слое энергия
сродства к электрону увеличивается, а
с увеличением радиуса атома — уменьшается.
Этим объясняются увеличение неметаллических
свойств в периодах слева направо и
уменьшение неметаллических свойств в
главных подгруппах сверху вниз.
Эне́ргией сродства́ а́тома к электро́ну, или просто его сродством к электрону (ε), называют энергию, выделяющуюся в процессе присоединения электрона к свободному атому Э в его основном состоянии с превращением его в отрицательный ион Э− (сродство атома к электрону численно равно, но противоположно по знаку энергии ионизации соответствующего изолированного однозарядного аниона).
Э + e− = Э− + ε
Электроотрицательность — химическое свойство атома, количественная характеристика способности атома в молекуле притягивать к себе электроны от атомов других элементов.
Наиболее сильными металлическими свойствами обладают те элементы, атомы которых легко отдают электроны. Значения их электро отрицательностей малы (χ ≤ 1).
Неметаллические свойства особенно выражены у тех элементов, атомы которых энергично присоединяют электроны.
В каждом периоде Периодической системы электроотрицательность элементов увеличивается при возрастании порядкового номера (слева направо), в каждой группе Периодической системы электроотрицательность уменьшается при возрастании порядкового номера (сверху вниз).
Элемент фтор F обладает наивысшей, а элемент цезий Cs - наименьшей электроотрицательностью среди элементов 1-6 периодов.