
- •1. Предмет химии в ее связь с другими науками. Основные разделы химии, предмет их изучения. Значение химии в различных отраслях хозяйства
- •2. Основные понятия и законы химии. Закон эквивалентов. Понятие об атомной и молекулярной массе. Закон Авогадро. Уравнение состояния газов.
- •4. Квантовые числа электронов. Распределение электронов по орбиталям. Принцип Паули. Порядок заполнения атомных орбиталей электронами.
- •6. Периодический закон и периодическая система д.И. Менделеева Структура периодической системы (период, группа, подгруппа). Значение периодического закона и периодической системы.
- •7. Периодическое изменение свойств химических элементов. Атомные и ионные радиусы. Энергия ионизации. Сродство к электрону. Электроотрицательность.
- •8. Химическая связь. Основные типы и характеристики химической связи. Условия и механизм ее образования. Метод валентных связей. Валентность. Понятие о методе молекулярных орбиталей.
- •9. Водородная связь. Особые свойства воды и некоторых других соединений, способных образовывать водородную связь.
- •10.Донорно-акдепторная связь. Комплексные соединения. Комплексообразователь и лиганды. Заряд комплексообразователя и координационной сферы. Координационное число константы нестойкости.
- •12.Химическая термодинамика. Энергетика химических процессов. Внутренняя энергия и энтальпия. Термохимические уравнения. Теплота образования и разложения веществ.
- •13.Стандартные тепловые эффекты различных процессов. Основной закон термохимии (закон Гесса). Применение термохимических расчетов,
- •14.Химическое сродство. Энтропия. Ее изменение при химических процессах. Стандартные энтропии веществ. Методы расчета" изменения энтропии в ходе химической реакции.
- •16.Химическая кинетика. Факторы влияющие на скорость реакции, методы ее регулирования. Закон действующих масс. Константа скорости реакции. Кинетические уравнения реакций.
- •17.Энергия активации. Активированный комплекс. Энергетические схемы хода реакции. Температурная зависимость скорости реакций. Правило Вант-Гоффа,
- •18.Катализ и катализаторы. Гомогенный и гетерогенный катализ.
- •19.Химнческое равновесие. Константа равновесия. Принцип Ле-Шателье Влияние на равновесие изменения температуры, давления» концентрации. Практическое применение принципа Ле-Шателье.
- •20. Дисперсные системы, их классификация, устойчивость и коагуляция. Колойдные и истинные растворы. Способы выражения состава растворов.
- •21.Растворимость газов, жидкостей и твердых веществ в жидкостях. Закон Генри. Закон распределения. Давление насыщенного пара растворителя над раствором. Первый закон Рауля.
- •22.Температура кристаллизации и температура кипения растворов неэлектролитов. Второй закон Рауля. Осмотическое давление. Закон Вант-Гоффа.
- •23.Электролиты. Электролитическая диссоциация. Степень и константа диссоциации, связь между ними. Активность и сила раствора
- •24 Свойство растворов электролитов. Изотонический коэффициент, его определение. Связь изотонического коэффициента со степенью диссоциации. Применение электрохимических процессов.
- •25.Вода Природные воды, их обработка Замкнутый водооборот. Водород, водородная энергетика.
- •26.Произведение растворимости. Электролитическая диссоциация воды. Ионное произведение воды. Водородный показатель. Методы определения концентрации ионов водорода
- •28.Электродные потенциалы. Механизм их возникновения. Двойной электрический слой. Уравнение Нернста. Ряд напряжений.
- •29.Гальванические элементы. Теория гальванических элементов.
- •30.Электролиз расплавов растворов. Правила электролиза с инертным анодом. Электролиз раствора с растворимым анодом.
- •31.Основные законы электролиза. Применение электролиза. Гальваностегия и гальванопластика. Электрохимическая обработка металлов. Аккумуляторы.
- •33.Методы защиты металлов от коррозии. Металлические защитные покрытия (анодные, катодные). Неметаллические покрытия. Электрохимические методы защиты от коррозии.
- •34.Общие свойства металлов. Металлическая связь. Тепло- и электропроводность. Физико-механические и химические свойства металлов.
- •35.Основные методы получения металлов, пиро-, гидро- и электрометаллургия. Методы рафинирования металлов. Зонная плака, иодидный способ.
- •36.Основные типы металлических сплавов. Сталь. Чугун. Сплавы цветных металлов. Латунь. Бронза. Дюралюминий. Сплавы на основе свинца и олова. Их свойства и применение.
- •38. Высокомолекулярные соединения (вмс). Полимеры. Классификация. Методы получения. Полимеризация. Поликонденсация.
- •39. Форма, гибкость и структура макромолекул полимеров. Конформация и конфигурация. Атактические и стереорегулярные полимеры. Сополимеры и блоксополимеры. Надмолекулярная структура полимеров.
- •40. Агрегатные, физические и фазовые состояния полимеров. Физикомеханические и химические свойства полимеров.
26.Произведение растворимости. Электролитическая диссоциация воды. Ионное произведение воды. Водородный показатель. Методы определения концентрации ионов водорода
в насыщенном растворе электролита произведение концентраций его ионов есть величина постоянная при данной температуре. Эта величина количественно характеризует способность электролита растворяться; ее называют произведением растворимости электролита
что произведение растворимости, вычисленное без учета коэффициентов активности, является постоянной величиной только для малорастворимых электролитов. Кислотность или щелочность раствора можно выразить другим, более удобным способом: вместо концентрации ионов водорода указывают ее десятичный логарифм, взятый с обратным знаком. Последняя величина называется водородным показателем и обозначается через рH: РН = - lg [н+]
27.Окислительно-востановительные процессы. Составление уравнений окислительно-востановительных реакций. Метод электронного баланса. Направление окислительно-восстановительных реакций. Метод электронногобаланса.
Реакции, в результате которых изменяются степени окисленности элементов, называются окислительно-восстановительными,
отдача электронов, сопровождающаяся повышением степени окисленности элемента,— называется окислением.
Присоединение электронов, сопровождающееся пониокением степени окисленности элемента, называется восстановлением.
Вещество, в состав которого входит окисляющийся элемент, называется восстановителем, а вещество, содержащее восстанавливающийся элемент, окислителем
число электронов, отдаваемых молекулами [атомами, ионами) восстановителя, равно числу электронов, присоединяемых молекулами (атомами, ионами) окислителя.
28.Электродные потенциалы. Механизм их возникновения. Двойной электрический слой. Уравнение Нернста. Ряд напряжений.
В соответствии с разделением окислительно-восстановительной реакции на две полуреакции, электродвижущие силы также принято представлять в виде разности двух величии, каждая из которых отвечает данной полуреакции. Эти величины называются электродными потенциалами.
Если из всего ряда стандартных электродных потенциалов выделить только те электродные процессы, которые отвечают общему уравнению Мz+ + zе = М то получим ряд напряжений металлов. В этот ряд всегда помещают, кроме металлов, также водород, что позволяет видеть, какие металлы способны вытеснять водород из водных растворов и кислот.
29.Гальванические элементы. Теория гальванических элементов.
Концентрационные и окислительно-восстановительные гальванические элементы. Химические источники тока.
Устройства, которые применяют для непосредственного преобразования энергии химической реакции в электрическую энергию, называются гальваническими элементами. Их называют также химическими источниками электрической энергии (сокращенно ХИЭЭ) или химическими источниками тока. Действие любого гальванического элемента основано на протекании в нем окислительно-восстановительной реакции. В простейшем случае гальванический элемент состоит из двух пластин или стержней, изготовленных из различных металлов и погруженных в раствор электролита. Такая система делает возможным пространственное разделение окислительно-восстановительной реакции: окисление протекает на одном металле, а восстановление—на другом. Таким образом, электроны передаются от восстанови-, теля к окислителю по внешней цепи. Рассмотрим в качестве примера медно-цинковый гальванический элемент, работающий за счет энергии приведенной выше реакции между цинком и сульфатом меди. Этот элемент (элемент Якоби — Даниэля) состоит из медной пластины, погруженной в раствор сульфата меди (медный электрод), и цинковой пластины, погруженной в раствор сульфата цинка (цинковый электрод). Оба раствора соприкасаются друг с другом, но для предупреждения смешивания они разделены перегородкой, изготовленной из пористого материала.
Направление движения ионов в растворе обусловлено протекающими у электродов электрохимическими процессами. Как уже сказано, у цинкового электрода катионы выходят в раствор, создавая в нем избыточный положительный заряд, а у медного электрода раствор, наоборот, все время обедняется катионами, так что здесь раствор заряжается отрицательно. В результате этого создается электрическое поле, в котором катионы, находящиеся в растворе (Сu2+ и Zn2+), движутся от цинкового электрода к медному, а анионы SO4— в обратном направлении. В итоге жидкость у обоих электродов остается электронейтральной.